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1. In a forthcoming paper 1) we prove the following 

Theorem J. IE 

n 
{(z)=ao+ ... +anzn=an lI(z-z,,) . ... (1.1) 

,,=1 
and 

max 1{(z)1 = M. 
Izl=1 

. . . . (1. 2) 

then for arbitrary fixed 0 :;;; a < f3 ;:;;; 2:n we have 

Here - and throughout the paper - the expression a :;;; arc z :;;; f3 mod 2 :n 

means that the image of z on the complex planelies in the angle formed 
by arc z = a and arc z = f3. 

The meaning of Theorem I is obviously that given a sequence of 
polynomials (the n~th of degree n) having the maximum modulus M n on 

the unit circle and su eh that i M n increases "not too rapidly" (e.g. 
I ao an I 

i M n < e1o: n) then the roots of the n~th polynomial are unjformly 
lao ani 

distributed in the different angles even if the size of the angle tends to 0 
with tin "not too rapidly". 

2. It is natural to ask whether restricting only 

1 I Mi} -=-= max I {(z) _-=--= 
il ao an I1 zl=i} Y I ao an I 

. • . . (2. 1) 

with fixed {} (0 < {} < 1) a similar equidistribution theorem can be deduced. 
It is easy to see that this is not the case. Indeed let 

Z Z2 zn 
epi (z) = 1 + 17 + 21 + ... + nl 

n 

{( ) - n (i n I) _ 1 + + n 
Z - Z epi \ z - . . . z. 

1) Submitted to the Annals of Mathematics. 

(2.2) 



IE z is on the circle I z I 
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1 then from STIRLINO's formula we have 
2e 

n 

r~ w=TZT>2n 

. Iwln Iwln- I Iwl 
I.e. the terms nT' (n-1)I.··'. -1-' 1 decrease more rapidly th en a 

geometrie progression with quotient 1/2. Thus 

i.e. for 1 z 1 ~ 2
1
e 

1 f(z) 1-= 2 • --;===;: max 1 f(z) 1-= 2. 
V 1 ao an 1 I z 1= ië 

On the other hand, as SZEOÖ 2) showed, we have for the number NI resp. 
N 2 of roots of epI (z) (i.e. also of f(z)) Iying in the half plane Rz ~ 0 resp. 
~ 0 the relations 

. N 2 1 1 
hm -=---. 

n-+:>:> n 2 en 

i.e. the roots of f (z) are not uniformly distributed in the different angles. 

Hence the polynomials (2.2) give the required counter-example for {} ~ de' 
Choosing instead of the partial-sums of the exponential series the partial 
sums of certain MITTAG-LEFFLER functions 3) we see that even if a 

sequence of polynomials (the n-th of degree n) divided by Y-fa~a;;j 
remains uniformly bounded 'in n over a prescribed circle 1 z I ~ {} with 
o < {} < 1, the roots of the n-th polynomial are not necessarily uniformly 
distributed in the different angles . No doubt, this fact throws a new light 
on the theorem stated in 1. and enhances its interest considerably. 

3. So without imposing any further conditions on M {} (2. 1) can 
rlao an 1 

not lead to an equidistribution theorem similar to that of 1. However we 

2) G. SZEOÖ, Ober ei ne Eigenschaft der Exponential-reihe. Sitzungsber. der Berliner 
Math. Ges. 50-64 (1924). 

3) The distribution of roots of these partial-sums and even of the partial-sums of a 
genera! class of integral functions of finite positive order has been determined by 
P . ROSBNBLOOM (ta appear in the Transactions of Amer. Math. Soc.). 
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shall show that a simple additional con dit ion can save the situation. We 
shall prove the following 

Theorem 11. IE all the roots of a polynomial 

f(z) = ao + al Z + ... + an zn • (3. 1) 

are outside the open unit cirde; and for a fixed 0 ~ {} < 1 we have for 
I z 1= {} the inequality I f(z) I:;:; M6 then writing (without loss of generality) 

n 

l' I ao an I 
eg (n,6) • n ==- g (n. {}) ==- 2 . . • • (3.2) 

we have for all 0 ::;; a < (J ::;;;; 2 :n: 

I Iv 1 - {J2 a n I < Clog ! . I '( _Cl) • • (3. 3) 
CI~arcz .. ~.smod2 n n v og g n. ·v 

wh ere C denotes a numerical constant. 
As we mentioned before while discussing Theorem I. if a given sequence 

of polynomials 

fn (z) = abn) + a\n) z + ... + a~) zn 

n= 1.2 • .. . 

has the property that their absolute maxima M(n) on the unit orde satisfies 

M(n) 
"'7-F=;=::;::=;=::;=;= - e O(nl l' I abn)a~) I - .. • • (3.4) 

th en their roots are equidistributed in the different angles. Theorem 11 
reveals the surprising fact that the much weaker condition concerning 
the absolute maxima M':!. on the cirde 1 z 1 = {}. (0 < {} < 1 and fixed) 

M(n) 
6 _ o(n) 

l' I abn) a~) I - e • • 
. (3.5) 

can assure the equidistribution of the roots, iE they are all ~ 1 in absolute 
value. 

M6 
In the case when is "not too large", e.g. when 

l' I ao an I 
M6 -= Yïi -e l' lao ani -

(3.6) 

the error term (3. 3) is of order n/log n. Curiously enough the same 

holds iE e Yïi is replaced by nlOO or even by a numerical constant say 10000. 
Though this error term is worse than that of Theorem I, DE BRUIJN 4 ) 

4) In a letter wherein he cOIljectured essentially our theorem 11. 
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remarked that the order of the error term is best possible for every 
o < {} < 1; indeed 

{}= e-C , e> 0 
and 

1 = [! log n ] ' k = L:gn n J. 
the polynomial 

f(z) = (1- z/)k 

satisfies 

( 
cn -C(!lO\Jn-I)) MD -== (1 + e-c/)k < exp (ke-C/) < exp -- e C = 

log n 

= exp -_. - eC < 2 , < 2 (
cn 1 ) M{} 

log n n l' I 80 Bn I 

for n > no = no ({}). and f (z) has roots of multiplicity > C -I n - 1 > 
ogn 

> 2c . -I n for n > n1 = n1 ({}), which evidently shows that the error term 
ogn 

in Theorem 11 is (with regard to n) the best possible. As a matter of 
fact essentially DE BRUIJN's example shows that Theorem 11 is for every 
admissible g( n. {}) essentially best possible. Indeed put 

11 = [ ~ log 9 (n. {})] • k l = [log ;(n. ,?)J. 
The polynomial 

has a root of multiplicity 

> en -l>~' n 
log 9 (n. {}) 2 log 9 (n. {}) 

though on the circle I z I = e-< = {} we ;have 

cn 

I ç ( ) I ~(l -c G10gg(n,{})-I))IO\Jg(n.{}) (en~) 
ti z - + e < exp I ({}) ( fJ) < ogg n. 9 n. 

< exp (g (;. {})). 
if g(n. {}) is sufficiently large. 

In our paper 1 ) we have not dealt with the question whether the error term 
in Theorem I is best possible, with respect to n. but we can show by an 
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example that it is essentially best possible; we do not discuss here the details. 
For some further remarks ahout the relation of Theorem land 11 see 10. 

4. In 8 we shall see using .a method due to I. SCHUR 5). how the 
general case of Theorem 11 can be reduced to the case when all the roots 
of f(z) lie on the unit circle. In 9~ we easily deduce Theorem 11 thus 
specialised from the following 

Theorem ID. IE (jJl. (jJ2 • .... (jJn are real and 

I Sk I _I ptl ekl'fp 1-= 11' (k) ,k = 1, 2 •...• m (4. I) 

m = m (n) ~ 1 . (4. 2) 

then for arbitrary 0 :s; a < f3 :s; 2 n we have 

1 

E, l_f3-a~I<C(_n_+.Ë 11' (k)) 
"'~l'p~~mod2" 2n ,m + 1 k=1 k 

with a numerical constant C. 

5. Theorem 111 is ohviously a "finite" form of the classica I theorem of 
H. WEYL ij) according to which if (jJl' ({J2 • ••• is an infinite sequence of 
rea 1 numbers satisfying for every integer k the relation 

1 n , 
lim - E ek'I'P = 0 
n~oo n ~=I 

then for every O:S; a < f3 :s; 2 n we have 

lim J..- E~ 1 
n~oo n "'~I'~~,9mod2" 

. ,,~n 

Another "finite" form of this theorem one can find on p. 101 of 
KOKSMA' s well-known hook 7). where a sketch of the proof is also giv~n. 
Theorem of VAN DER CORPUT and KOKSMA (in a slightly modified and 
restricted form). IE th ere is a <5 with 0 < <5 :s; 1 such that (4. 1) holds for 

k-=[~109! (log 109 !)]=No, 

K being a suitable pume'rical constant. then with the same K we have for 
all O:S; a < f3 :s; 2 n 

1 "'~I'~f;mod2:r1-f32nanl<K~n+2K I~:~~ lp!k) + 
ka 

11' (k) e- 891~'kcl' 
k . 

5) I. SCHUR. Sitzungsber. Berliner Akad. 403-428 (1933) . 
6) H. WEYL. Ober die Gleichverteilung von Zahlen mod Eins. Math. Ann.. 77. 

313-352 (1916). 
7) J. F. KOKSMA. Diophantische Approximationen. Ergebn. der Math. und ihrer 

Grenzgebiete (1936). 
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Choosing <5 = m ~ 1 we see that in order to obtain the same error term 

as in (4. 2) we have to restrict more of the s k' s. i.e. Theorem 111 is sharper 
than the theorem of VAN DER CORPUT-KoKSMA. As a matter of fact one 
can not deduce Theorem 11 from it (whereas it can he deduced from 
Theorem 111). This improvement was obtained roughly speaking by using 
"DUNHAM JACKSON means" of the FOURIER series of the periodic dis~ 

continuous function f 2 (x) defined by 

f2 (x) = 1 for 0 -== x < a 
f2 (x) = 0 for a -== x < 2 n 

instead of the partial sums of the continuous function f 3 (x) defined by 

f3 (x) = 1 
f3 (x) = 0 

for 
for 

'I'j-==x-==a-rJ 

a -== x -== 2 n. 
and linear in the remaining intervals. 

6. We consider Theorem 111 in the special case 

1 > 1 and bed 

Eor all k :;;;; n 11'-. 

Then the error term in (4. 2). if m :;;;; n 11'-. is 

i.e. choosing m = [n I{(). + 1)] we obtain the following 
CoroUary. IE Pl' ...• pn are real. 1 ~ 1 and 

I.!, <"'·1 ~ k' I 
1 -== k -== nA + 1 ~ 

then for all 0:;;;; a < f3 :;;;; 2 n we have 

with a numerical constant C. 

(6. 1) 

(6.2) 

The interesting question whether the estimation (6.2) is best possihle 
or not. remains open. 

7. L. KALMÁR 8) made the remarkahle discovery that iE the roots of the 

8) L. KALMÁR. Az interpolatióró! (hungarian) . Matematikai és Fizikai Lapok 1926. 
p. 120--149. The expression T n (z) in (7.3) denotes the classica! CEBi'CSFJF-po!,ynomiaI 

He actually proved a more genera! theorem when the roots of polynomia!s «J n (z) !ie on a 
prescribed closed JORDAN-curve. 
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polynomials 

W n (z) = (z - xin») (z - ~n») ••• (z - xl:») 

satisfy for all n = 1. 2 •... the inequalities 

1 == _Jn) == _Jn) == == x(n) == - 1 -~î -~ _ ... - n - • 

(7. 1) 

(7.2) 

and if the polynomials Wn (z) have the asymptotic representation (with the 
obvious meaning of the n~th root) 

. l;/wn(z)-
llm -r ()-1 

n-'aD n Z 
(7.3) 

on the complex z = x + i • y~plane. cut along the segment - 1 ::;;; x ~ 1. 
then the roots x~n) are uniformlydistributed in FEJÉR's sense 9 ) in [-1. + 1] 
i.e. writing 

_Jn)- -Q(n) -1 2 -1 2 O""""-Q1n)"",,,,-Q(n)"""" """,,-Q(n)"""" ..x;, -COS U,. ,v_ , , ... ,n,n- , .... , =V't ='V2 =",=vn =1't (7.4) 

we have for every 0 :;;; a < {J $ 2 n 

(7.5) 

It is easy to see from (7.3) that the polynomial 

( 
. 1 ) w+-

2n w n wn 2 w =Fn(w) 

has all its roots on the unit~circle and for I w I < 1 

n 

lim YFn (w) = 1. (7.6) 
n-.aD 

9) L. FEJÉR. Interpolation und konfonne Abbildung. Gött. Nachr. 1918. p. 319-331. 
Generally if 1 is a given JORDAN-curve and the points z(n). z(n) ... .. z(n) (n = 1. 2 •... ) are 

. J 2 n 
on 1. he calls the points z(n) uniformly distributed over 1 if mapping confonnally the 

" outside of 1 onto the outside of I w I = and continuouslyon the boundary. the maps 

w(n) - el!,(n) w(nl - el!'(n) 
1 - 1 , ••• , n - n 

are unifonnly distributed over the unit-elrcle in WEYL's sense i.e. for every 0::;; a < P:;;; 2:1r 

lim 1-. b 1 = {J - a . 
n-. aD n «~!,~n)~J3 2n 

In the case when 1 degenerates into a doubly-covered segment -1 $ x $ + 1 then the 

mapping function is z = t (w +~) and we get the definition (7:4)-(7.5). This definition 

of equidistribution' fits in with various function-theoretical problems even in the case of 
segments. 
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1t is natural to ask for the "finite" analogon of KALMÁR's theorem. Making 
the following weaker assumption that the roots of the polynomial 

f(z)=ao+ ... +zn . ...••. (7.7) 

Jie in I z I ~ 1 and on a fixed circle I z I = {}, 0 < {} < 1 we have 

If(z)l::l+e .. (7.8) 

we may expect that the error t-erm in the distribution of arc Zv is much 
smaller if E is "smalI". But the example of DE BRUIJN 

12 = [w log nl. k2 = [ ! . 10: nJ 
with sufficiently large w > w,o ({}) shows as before that even under the 
assumptions (7. 7) and (7. 8) we can not get a bet ter error term than 

o(_n) 
log n • 

As was conjectured by DE BRUIJN, we can prove that the error term is 

o ( lo! n) ,only if we assume that the sequence f n (z) of polynomials (7. 7) 

satisfies lim max I f n (z) I = 1 for every positive {} < 1. 
n-+'" Izl=" 

8. As mentionedin 4. we start with the following remark of I. SCHUR. 
Let z = rei,!, be a fixed point on the complex~plane, and 1; = eeiT move 
along the line arc 1; = y (y fixed). Then 

I z-1;1 2 = r2 + e2 - 2re cos (lP-a) 

Iz-CI2 r 2 

ICI =;+e-2rcos(lP-a). 

If e moves from + CD to e = r the expression on the right decreases 
monotonically; hence if 1; = 1;0 = eo e iyo , eo> 1 and I z I = r:S; 1 then 

Iz-C 12 
___ 0 _ ==: I z - e iyo 12 

ICol - . . . . (8. 1) 

This is the remark we need. 
Let 

n n 
f(z) = aD + ... + an zn=an II (z-Zy) = an II (z-ey eiTY ) (8.2) 

,,=\ ,,=\ 

be the polynomial of Theorem 11; let 

" = 1, 2 ••..• n. . . . . (8. 3) 

and the {} of this Theorem be fix ed. Let z be on the circumference of the 
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circle 1 z I = {jo and '0 he any of the roots Zv. Then the remark (8. 1) gives 

I z-zvl
2 =-1 i'f 12 

Izvl = z-e v • v = 1, 2 •...• n. 

Multiplying all these inequalities we ohtain on the whoJ.e I z 1 = {jo the 
inequality 

i.e. a fortiori 

M; = max 1'1' (z)l-= max /{(z)1 = y MiJ • • • (8.5) 
Izl=iJ Izl=iJ IBaBnl IBaanl 

The distrihution of the roots of tp(z) in the different angles is identical 
with that of f (z). Now assume that Theorem 11 is proved in the case 
when all the roots lie on the unit circle; th en 

I bn 1 = 1 . . . (8. 6) 

and with 

n 

max 1'1' (z) 1= M; = eg*(n.iJ) 
1 z l=iJ 

we have for all O:S; a < fJ :s; 2 :n: 

I 
b L - {J - a n I < Clog -.! . n 

"'~'f,. ~,gmod2n 2:n: {jo log g. (n. {jo)' 

Then using (8. 5) we have 

. (8.7) 

_n_ MiJ _n_ 
eg*(n,iJ) = M; -= = eg(n, iJ). i. e. log g (n. {jo) -= log g. (n. {jo) 

y I BO an I 
i.e. from (8. 7) a fortiori 

I 
Iv 1 - {J - a n I < C log ~ . n . 

"'~'f,.~j3mod2n 2:n: {jo logg(n.{jo) 

Hence· Theorem 11 will indeed he entirely estahlished once we prove it in 
the special case when all the roots lie on the unit circle. 


