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with ¢9(4) = Min (cy, cp 42) if 1 <1, ¢y9(4) = ¢y if 1= 1. It follows,
that, if 1 <e-1¢-1,
e~1s-1

fx(u.y)dyl<§no‘wm B A4

i

Furthermore we have, by (3.1), |#(u, y)| = (1 + y2)-1 for any u and
y, and it follows that

-] -] d
)fx(u,y)dy’gfl_{_yyzgeo. e . . (4.8
e~1g-1 e 11

and also

jn(u,y)dy}geo ifiz=elol. . . .. (49

From (4.7), (4.8), (4.9) and the analogous inequalities for y <0, (4.6)
follows immediately (c; = 2e, cg (4) = Min {1, ¢y (2)}).

For a closer investigation of #(u,y) for small values of |y| we use
(2.15). Introducing the abbreviations (s = o+ ioy)

g'ak sT2rikllogr — g (), 27,8,, s"—w(s), . . . (4.10)

—

¢ (u, y)=-exp[{log?(1 4 iy) 4+ 2logo-log (1 +iy)}/2logr— (4.11)
—4§log (1 +iy) +iuyolr + g(s)]
we have
%(u, y)=op (g, y)eg@+t20-260 | (4.12)
If6<e-1,|y| =1 we have
lo@s)|<epo o o o o . . . . (4.13)
and by (2.16) and (4.10)

lglo+ioy)|<ca v « . . . . . (414
In virtue of (3.1) and (4.3) we have

|%(w,y)| < 2@ 0)| =1 (—oo<ly<e) . . . (4.15)
and it follows from (4.12), (4.13) and (4.14) that

1 A
lfx(u, y)dy—e‘g")fg(u.y)dy’ <30 for 0 <A< 1, u>ce (4.16)
iyt By
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2
We transform / o(u, y) dy by introducing a new variable z by
-2

t22=log(14+iy)—iy. . . . . . . (4.17)
y=z+ w2zt usz22+ ... (lz]<ecy) « . (4.18)

On expressing u in terms of ¢ by (4.1) we obtain from (4.11)

. (log? (1+iy) + z%log o
elug)=exp ST

—4log(l +iy)+glotioy);(4.19)

If we put, for a moment,
loga/logr=v

the function e#(%) becomes an analytical function of the variables v and y
in the range |Imv|<<Z}a/log r, |y|<cos (Imv logr), since g(s) is
analytical for Re s > 0 (cf. (2.16)). Moreover it is a periodic function of v
with period 1. It follows that e¢(*) can be written in the form

eg(7+i7y) — 57 Xn (U) y" % ‘ B . . . (4' 20)

n=0

where the functions yn(v) are analytical in the strip [Imv|<%a/logr,
periodical mod 1, and satisfy

[z (@) <! (oo <v<oo,n=0,1,2,...).
If v is real (4.20) converges for |y | <<1.
We now easily deduce from (4.19) and (4.20) that o(u, ) gg can be
written in the form (o real)

d R ® | \
o (. y)&iz’:ez-'wmownz_‘own (i—g—i)z” (Iz] < c) . (4.21)

Again, yn (v) is analytical for |Imv| <<{a/logr and
[wn (v)]| < ! (—ooe<<v<<oo,n=0,1,2,...).
It is easily verified that
yo(logo/logr)=e®. . . . . . . (4.22)

Now take cyg<<1 such that —c;q =y =cg implies |z|<<3cyqy,
c17|2z| <% and either |arg z| < {a or | arg —z | <<}7. Let ¢y and ¢, denote

the values of z for y = -—c,¢ and y = -+c,g, respectively, and put
Re 12 = Re {,2 = c;9. Now the integral

Cix

} o(u, y)dy

—Cis

43
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can be expanded in a familiar way by means of (4.21): for any positive
integer N we have (u > cg, 6 <e-1)

Cig ©
. IN+1 log 6>‘J. e 1;;;7'—1
— ogr n
l J 0 (u,y)dy nélo ¥ <log r € 2 ds

—Ci —»

<
(4. 23)

1
ologs

t -z
‘J e 2log r 2zn dZ

B

— ®
<C20 (N) e—cmlogf 1/2]0(37‘ + Z" C:l7+l

2N+2

.

On taking for our integration path the broken line consisting of the
segments (£, 0) and (0, ), we find because of

leir Lip | <3 |arg —(y | <da, |arg £o| <ia
(put |z | = ¢ on both parts of the path) if n = 2N + 2:

|
jfe—z'zlogf_l/ﬂogrzndz
%

| >
[ 22| 0
.

<J (2¢y,)1+2N+2 g tilogs~/alog r | ¢ [2N+2 dt<f.
— @

<

It now follows from (4.23) that (u > cgy, 6 <<e-1)

{fﬂe(u.y)dy—

e (4. 24)
— (Zdouryt £ (e =Bl flogs ¢z (N)
logo™ | m=o\logo™'/ 2mm! oo log r (log o~ Y)N+i"

On taking 1 = c;gin (4.6) and (4.16) we find (cf. (4.5), (4.1), (2.15),
(4.13) and (4.14))

(logz)* (3 1 . =1
P1 (u):r]/l(;g reZIogr (2+log r)log' tloglog= X
. T

g N o (1090) 2 .. (4.25)
Y log r 1
Xz Togoy T© ((log r*)NH)S'
where the functions
(2 m)!

2mm!

@m (v) = (log r)™ YvomWw) . . . . . (4.26)

are periodic functions of v with period 1, analytical in |Im v | <4n/log r.
Especially

Po (123 i) —efl) = expg Za‘b ap e~ iklogeflogrl . (4,27)
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Formula (4.25) is our final result for the asymptotic behaviour of Py (u);
o is related to u by (4.1) and cannot be expressed explicitly in terms of u
in a simple way.

5. Final results concerning P(u).
The difference P(u)—P{(u) is relatively small. We have, by (1.15)

Pu—1)<P w<P@, . . . . . . (6.1)
and on the other hand, by (1.9),

Pu)—Pu—1)=Pu/r)XPur*+1). . . . (5.2
It follows that
0ZPw—P @<P@er'+4+1. . . . . (5.3
In order to show that P, (ur—1 + 1) /P, (u) is small we first give a first-
order asymptotic expression for P, (u) explicitly in terms of u. It is readily
derived from (4.1),
oc'=ur'logr-logo!,
that, if u —» oo,
log 67! =log u —log log u + log log r —logr 4 O (log log u/log u),
log log 6=! =log log u + O (log log u/log u),
log? 0 = (log u —log log u)> — 2 log (r/log r) - (logu—log log u) +
+ 2 log log u + log? (r/log r) -+ 2 log (r/log r) + O {(log log u)?/log u},
and we obtain from (4.25)

= 2
log P, (1) = 1992 ,,1991203) ; 359@1@ n

—{—2% é;;log u—loglog u + log log r — 4 log 27 4

+_2°;(1k exp s2.‘tik (109 oJop log e log logr) g'{‘

{ log r
+ O {(log log u)?/log u{.

The an are defined by (2.11) and (2.13).

From (5.4) it is easily deduced that

Py(ur'+1)/P, (u) = O {exp (—log u + log log u)} = O (u~}).

Now (5.3) shows that (4.25) and (5.4) remain valid if P, (u) is replaced
by P(u).

If r and rh are integers we have P(h) = p(rh); thus (5.4) proves (1.4).

The more precise expansion (4.25) however cannot easily be expressed
explicitly in terms of u (or rh).

March 1948.
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