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wave-lengths if Ronfgen-rays are simple periodical disturbances :

for plate 4, B, C
A=0,16 0,05 0,12 pu.

Now that this suppositiorf does certainly nol hold, we shall have
to consider these values as estimations of wave-lengths, which in
the three different experiments have been more or less prominent
in the curve of energy') of the Rontgen-rays.

Mention ought 1o be made here, that, although noi too much im-
portance musi be atiached to the ihree values of 2 as far as the
absolute figures go, the difference they show is probably real and
connected with the difference in hardness of the tubes. As was
mentioned above the tubes used for plale /3 were distinguished
by a considerable hardness from the others, ‘which were relatively
very soft.

Worth noticing is also the fact, thal the values of A4 found here
are of the same order as those deduced from our former experiments.

Finally we wish io state emphatically that we continue to regard
as the chief result of our investigations the proof they furnish that
the Rontgen-rays ought to be considered as a phenomenon of radiation
in the ether. i

r
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Physics. — H. A. Lorentz. #The fundamental equations for electro-
maynetic  phenomena i ponderable bodics, deduced from the
theory of electrons.”

§ 1. In framing a theory thal seeks to explain all eleciromagnetic
phenomena, in so far as they do not take place in frec aether, by
means of small charged particles, elecirons, we have to start from
two kinds of equations, onc relating to the changes ol siate in the
aether, the other defermining the forces exerted by this medium on
the electrons. To these formulae we have to add properly chosen
asstunptions concerning the electrons existing in diclectrics, conductors
and magnetizable substances, and the forces with whiclh the ponder-
able particles act on the elecirons in these several cases.

In former applications of the theory I have restricted myself to

1 G H. Wmvo. 1. cc. -
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the problem of the propagation of light in transparent subsiances,
moving with a constant velocity. I shall now {reat a more general
case. I shall transform the orviginal equations into a set of formulae,
which, instead of quantilies belonging to {he individual elecirons,
confain only such as relate to the slale of visible parts of the body
and arc therefore "accessible to our observations. These formulae will
hold for bodies of very different kinds, moving in any way we like.

The greater part of the results have already been esfablished by
Poixcart in the scecond edition of his [lectricité et Optique. The mode
of treatmeni is however rather different.

§ 2. With some exceptions, I shall use in the fundamental equa-
tions the same notation and the same unifs as on former occasions.
The acther will again be supposed o remain at rest and to penetrate
the charged particles; the equations of the electromagnetic field are
therefore to be applied to the interior of the electrons, as well asto
the spaces belween them. We shall consider a distribution of the
charges with a finite volume-density, whose value is a continuous
funcétion of the coordinates. If we speak of #electrons”, we think
of the charges as confined to certain small spaces, wholly separated
from onc another; however, in writing down our first equations, we
may as well imagine a charge distributed over space in any arbitrary way.

We shall conceive the charges as being carried by #maiter”, though
we might, if we chose, leave the lailer oul of consideration. We
should then speak of the forces acting, not on charged matter, but
on the charges themselves.

Let us call
o the densily of the charge,

N

v the velocity of the charged maldter,
d the dielectric displacement, *)
8 the curreni,
b the magnelic force,
V the velocity of light.
Then we shall have .
Divdv=9o,. . . . . . . . oM

do )
= Div(pe)y =0,. . . . . . . . . . .1D
0t

1) The dieleelvic displacement, Lhe current and the magnetic force are here

represenled in small lype, because we wish lo keep in reserve large type for
corresponding quantities which we shall have to introduce laler on.
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_18:_‘6—-}—@{‘, . . . . . . . ‘ (1)
Roth=4dmd, . . . . . . . . .(l
—4daVrRotdv=0, . . . . . . . . .(I¥)

‘ Divh=0, . . . . . . . . . (V)

and the clectric force f, i.e. the force acting on the charged_matter
per unit charge, will be given by
f=4daVro4Jo.0] . . . . . . (V]

§ 3. If it were possible, by means of our observations. to pene-
trate into the molecular structure of a ponderable body, confaining
an immense number of charged particles, we should perceive within
and Dbetween these an electromagnetic field, changing very rapidly
and in most cases very irregularly from one point to another. This
is the field to which the equations ()—(V) must be applied, but it
is mnot the fleld our observations reveal to us. Indeed, all observed
phenomena depend on the mean state of things in spaces containing
a very large number of particles; the proper mathematical expressions
for such phenomena will therefore not contain the quantities themselves
appearing in the formulae (I)—(V) but only their mean values. Of
course, the dimensions of the space for which these values are to
be taken, though very large as compared with the mutual distance
of neighbouring particles, must at the same time be very much smaller
than the distance over which one must travel in the body in order
o observe a perceptible change in its state. We may express this by
saying that the diwnensions must be physically infinitely small.

Let /> be any point in the body and # a physically infinitely small
closed snrface of which it is the cenire. Then we shall define the
mean value at the point £ of a scalar or vectorial quantity A by

the equation

— 1
A:E A dT, . . . . . . . . (2)

in which the integration has to be extended {o all clements dr of
the space S, enclosed by . It is to be understood that, if we wish
to calculate the mean value for different points P, I, the corre-
sponding spaces S, S' are laken cqual, of the same form and
in the =ame position velatively to P, . The result A will depend
on the coordinates of the point considered; however, the above
mentioned rapid changes will have disappeared from it; it is only
the slow changes from point to point, corresponding to the pereeptible
changes in the stafe of the body, thai will have been preserved in
the mean value. y ’
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It is easily seen that : :
TN TIEEN
e e T T

Hence, if we take the mean values of every term in the equations

(M—(V) and (1), as we shall soon do, we may replace > and b by

» and b, Div o by Div ;, elc.

§ 4. Before proceeding further, it is necessary o enter into some
details concerning the charged particles we must suppose to exist in
ponderable bodies.

Each of these particles calls forth in the surrounding aether a field,
determined by the amouni, the distvibution and the motion of its
charges, and it may be shown that, if x, y, z are the coordinates
relatively to an origin O taken somewhere within the particle, and
if the integrations are extended to the space occupied by it, the field,
at distances that are large as compared with the dimensions of the
particle, is determined by the values of the expressions

) f@d’t,. e )
fgxdr, fgyd'r, fgzdr, B )]
‘ﬁ/rldr, fpv‘,,(lr, fgv,dr, B ()]
fg vaxdr, fg vy dT, fg vzdr, ete., . .. (6)

Now, we might conceive particles of such a nature that for each
of them all thesc quantities had to be taken into consideration. For
the sake of clearness, it will however be preferable to distinguish
between different kinds of particles, the -action of ecach of these kinds
depending only on some of the inlegrals (3)—(6).

a. If the charge of a pariicle has the same algebraic sign in all
its points, the actions corresponding to the integrals (3) and (5) will
far surpass those that are due {o (4) and (6); we may then leave
out of consideration these latler integrals. Such particles, whose fickl
is determined by their charge and their motion as a whole, may be
called concduction-electrons. We shall imagine them to be crowded
together at the surface of a charged conduetor and to constitute by
their motion the currents ihalt may be generated in metallic wires.
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b. In the second place, we shall consider particles having in one
part of their volume or smrface a positive and in another part an
equal ncgative charge. In this case, for which a pair of equal and
opposite electrons would be the most simple example, the surrounding
field is due to (4) and (5). We shall say that a particle of this kind is
electrically  polurized and, denoting by v the veetor drawn from the
origin towards the element of volume dr, we shall call the ™ vector

fgl‘dt:p e ()]

the electric moment of the particle. In virtue of the supposition

f@df::O,

this vector is independent of the position of the origin of coardinaies.
From (7) we may infer immediately

fgxd’r:px, ete. f@bxclr:{u., cte.

In all dielectrics, and perhaps in conductors as well, we must ad-
mit the existence of particles that may be electrically polarized. We
shall refer to their charges by the name of polarization-electrons.

c. Finally, let there be a class of particles whose field is solely
due to the cxpressions (6), the integrals (3), (4), (5) being all 0. If
we suppose the values of )

fgxgdr, fgxydt,fgx::dt, otc.

not to vary in the conrse of time, we can express all the integrals
(6) by means of the vector

1
Efg[r.v]d-c:—:m,. N ()

i.e. of the vector whose components are

1
my, — -2— f@ o:— 2 vy )d 1, ete.,

Indeed, we shall have

fgpn.X(lt:O, f@l\n-ydt:—m:,f@l‘xzdt:—l—my, ele. (9)

The field produced by a particle satisfying the above conditions
may be shown to be identical {o the field due fo a small magnet
whose moment is w. For this reason, we shall speak of a magnetized
particle and we shall call w its magnetic moment.

’
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According tn the view here adopted, this moment is cansed by

rotaling or circulating motions of “the charges within the particle,
similar {0 AMPERW's molecular clectric currents. If, for the product
¢y of a charge ¢ and ils velocity, we introdnce the name of #quantity
of motion of the charge”, the infegral in (8) may be said to repre-
seni the moment about the origin ¢ of the ¢uantitics of motion of
all the charges present.
, A very simple example is furnished by a spherical shell, rotating
ronnd a diameter, and ecnclosing an immovable, coneentric sphere,
the shell and the sphere having equal and opposite charges, uniformly
distributed. '

Whatever be the motion of the charges which eall forth the mo-
ment m, we may properly apply {o them the denomination of may-
netization-electrons.

§ 5. In the defermination of the mean values of the yuantitics
in (I), IT) and (1), the following considerations and theorems will
be found of use.

a. Consider a gpace containing an immense number of points @,
whose muiual distances are of the same ovder of magniiude as those
between the particles of a ponderable body. ILet WV be the number
of these points per unity of volume. If the density of the distribution

gradually changes from point to point — in a similar way as may
be the case with the obscrved densily of a body — the value of

N belonging to a point I is understood to, be derived from the
number of points @ lying within a physically infinitely small space
of which P’ is the centre.

Draw cqual and parallel veetors QR =1 from all the points @Q,
and consider a physically infinitely small plane do whose normal,
drawn towards one of its sides, is n. The question is to find the
number of {he vectors @ /2 that are intersceted by the plane, a
number which we shall call positive if the ends of ihe vectors, and
negative if their starling points lic on the side of da indicated by 7.

If V has the same value throughout the whole space, and if the
points @ ave irreyularly distributed, like the molecules of a liguid or a
gas, {he number in question will be the same for all equal and
parallel planes, whence it is casily found {o be

Ntydo . . « . o . . . .(10)

The problem is somewhat less simple if the points Q have a
regular. geomefric arrangement, such as those one considers in the
theory of the structure of crystals. If, in this case, the length of
the vectors @Q R is smaller than the mutual distance ¢ of neigh-
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bouring points, it may come to pass that there are & certain number
of intersections with one -plane do and none at all with another
plane of the same direction. We shall meet this difficulty by irregu-
larly undulating the element of surface, in such a way that the
distances of its poinis from a pline do are of the same order of mag-
nitude as the distance d, and that the direction of the normal is very
near that of the normal n to this plane; so that the extent of the
element and the normal to it may still be denoted by do and n. It
is elear that, if NV is a constant, the number of iniersections of the
veetors @ R with such an undulated element may again be said to
depend only on its direction and magnitude, and that it may still
be represented by the formula (10).

The same formula will hold in case the value of NV should slowly
change from point to point, provided we take for V the value belong-
ing to the centre of gravity of the element. '

b. Let us apply the above result io the elements do of a closed
surface 6. Let n, be the number of ends R, and n, the number of
starting points @ lying within o.

Supposing the normal 7 to be drawn in the outward direction,
we may write for the difference of these numbers

nl—uzz—le‘,,dd, B 0

an expression, which of course can only be different from 0, it NV
changes from point o point.

c. Leaving the system of points, we pass to a set of innu-
merable equal particles, distributed over the space considered. Let g
be a scalar quantity, whose values in the points A4,, 4,,. . . 4; of
one of the particles are ¢,,q., . . . qi, the position of these poinis
and the values of ¢ being the same in all particles, and these values
being such that

w4+ - F=0. . . . . . (12

We proceed to determince the sum ='¢ of the values ¢, belonging
to all the points 4 that lie within the above mentioned closed sur-
face 4. Of course, the particles lying completely within the surface
will contribule nothing to this sum. Yet, it may be different from
0, because a certain number of particles are cut in two by the sur-
face, so that only a part of the values ¢,, ¢,, . . . qu Dbelonging
to each of these are tfo be taken into account.

Assume in each particle an origin O (having the same position
in cach) and regard this as composed of L points O,, O,, . . . O
Attach to these the values —gq,,—'q,, . . . —qt. Then, in virtue
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of (12), we may, without changing the sum X¢, include in it not
only the points A, but likewise the poinis (). Now, if the vectors
0, 4, 0, 4,, . .. O A; ave denoted by v, v,, . . .ty the partof
X due to the points (), and A, will be

—fl\' 1 v 40,

as may easily be inferred from (11). There are similar expressions
for the parts of the sum corresponding to O, and A4,, 0, and A4,
ele. Hence, if we introduce for a single particle the veclor
S S 6 F:)
and if we put
Ni=9,. . « . « . . . . (14

—fD_,,d(r N ¢ 1)

In this formula, the vector D) is to be considered as a function of
the coordinates because the number N may gradually change from
one point 1o another (this §, «) and the vector § may vary in a
similar way. If now the surface 6 is taken physically infinitely
small, though of so large dimensions that it may be divided into
clements, cach of which is large in comparison with molecular dimen-
sions, the expression (15) may, by a known theorem, be replaced by

—Dwd.S, . . . . . . . (16
S Deing the space within the surface o.

d. 1 has been assumed till now that the yuantity ¢ oceurs only
in a limited number of poinis within ecach particle. By indefinitely
increasing this number £, we obfain the case of a quantily ¢ con-
finnously  disfributed. We shall {hen wrile gdr instead of ¢, and
replace the sums by infegrals. The condition (12) becomes

Jgdr:O,

which we shall suppose fo be fulfilled for cach separate particle,
the veetor v is now to be defined by the equation

q:.—fql‘("r,. R ¢ 1))

and the sum = ¢, whose value we have caleulated, beeomes f qdr,

the final result will le

taken for the space enclosed bij o. 1f we still nnderstand by 9 the
vector given by (14), the value of theinlegral for a physically infinitely
small space will be
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— Div 0.5
Now, according to the definition of mean values (§ 3), division of

this by S will give the mean of ¢; hence

g=—Divd. . . . . . . . . (18

This result may cven be extended to a state of the body, in which

the distribution of the values of ¢ is not the same in neighbounring

particles. In this easc we may again apply to each particle the

formula (17), but 9 can no longer be ca'lcu]a(ed’by (14). We have
now to define this vector by -

D_:%_,q, B ¢1Y)]
the sum being taken for all the particles that lic wholly in the space
S, without attending to those that arc cut in {wo by the sarface.
We may express this in words by saying that 9 is the sum of all
the veetors' q, reckoned per unit of volume.

e. The case still remains that a quantity ¢, given for every point,

has such values that the integral () = f qdr, laken for a single par-

-ticle, is not 0. If this ynantity were constmt throughout the space
occupied by a particle, it would be UIIDC(‘OSS&I.) {o take info account
those which are cul in {wo by the surface ¢ and we should have

=N ‘
The most general case may be reduced in the following way to
this case and to those that have already been disposed of before. If
g is distributed in some arbitrary manner, we begin by cm]cuhtmw

for a single particle the mean value g, =~ ((j) s being the volume
of the particle, and we put in every point ¢ — 91 =¢,. Weshall then have
(=0T

The problem is {herefore reduced o the determination of {wo
mean values, onc of which may be found by what has just been
said, and the other by applying the formula (18).

§ 6. The mean value of cach of the quantitics ¢ and ¢ v in the
equations (I), (II) and (1) may be decomposed into three parts, be-
longing 1o the conduction-clectrons, the polarvization-clecirons and ihe
magnetization-elecirons. In determining them, we shall suppose the
ponderable matter to have a visible motion with velocity w, and we
shall write p» for the velocity the charged maiter may have in
addition o this. We have therefore to replace » by w —|— v, and lo

determine separately ¢ wand g v.
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a. Conduction-electrons. The mean value of g, in so far as il depends
on these, may be called the (neuswrable) density of electric charge;
we shall denote it by o,.

The mean value € of ¢ w may be represented by

C=p,w
This is the conwection-current, and the vector
JI= o,

taken for the conduction-elecirons, may fitly be called the conduction-
current, .

b. Polarization-electrons. Let the body contain innumerable particles
electrically polarized, each having an eleciric moment p. The vector
defined by the equation
1
S
where the sign X is to be understood in the same sense as in the
formula (19), is the electric moment for unit volume or the electric
polarization of the body. Replacing ¢ by ¢ in the formulac of § 5, d,
and taking into account (7), we find for the part of ¢ that is dueto
the polarization-electrons,

P=o SP, « = o o . . . . (20)

¢, = — Div 9",
We may next remark that the visible velocily w is practically the
same in all points of a particle. Since, for the space occupied by i,

fg (l T= 0,{ .
we have likewise

fgwl(lr: wadr::f()w: dv =0,

so that the values of gws, ow,, @ w; may be found hy means of
(18). The result is

ow, = — Div (W, P), elc. . . . . . (2D

We have finally to delermine ¢ v. Now, the gunantilics gv,, ¢vy,
ov, are of the kind considered al the end of § 5, ¢. However, there
are cases, especially if the velocities v,, vy, »; and the dimensions of
the particles are sufficiently small, in which the parts of ov,, ovy, ov:
corresponding {o ¢, of § 5, ¢, may be neglected. Confining ourselves
to such cases, we shall determine @ withoul taking into consideration
the particles intersecled by the surface o.

For a single particle we may write
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dp
a1 = —
gﬁ” sa

and for a physically infinitely small space, partaking of the visible

motion
d
dr—=—2p. -
f grar dt P
On account of (20) this is equal to )
- (3 ™,
so that

1
T=g fevdr=3 LM,

In performing the differentiation we must attend to the change of 9 in
a point that moves with the velocity w. If § relates to a fixed point
of space, we have

ap . ap oy oy
Tt. _gp -+ lvxa—l‘ my@ + l\):a_7

la(

and, since
ds
—=S8.Dw,
dt

T, o) 0 b
ov =" -} mL£ -+ my%‘ + w. g—j-) ™ Diew.
Combining this with (21), we get for the mean value of the cur-

rent corresponding to the motion of the polarization-electrons
P 4+ Rot [P . w].
¢.  Magnetization-electrons. If the body contains magnetized particles
(§ 4, ¢), we have nothing to add to ¢ and gw. There will however be
a new part of ov. We can calculate it by applying (18), because the
quantities (5) vanish for every particle.
Let us first replace, in the formulae of § 5d, ¢ by gv,. We
then find
q,=0, gy == — My, qz == -+ 1y,
and, if we denote by MW the magnetic moment for wiit volwne or
the magnelization, a vector that 15 to be defined in a similar way 'as ¥,
D, =0, D, = — My, D, = 4 M,

y =
Finally, by (18),
— aw)x oMy

QY = - o

T oy 0c '’
with similar expressions for v, and gv..
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The mean value of the current, in so far as it is due to the
magnetization-elecirons, is therefore
Rot 9%,
It may be called the current equivalent to the maynetization.
§ 7. It remains to take iogether the different parts of the second
member of (1). Putting

D=0, . - . . . . . . (22)

B=DH, . . . . . . . . . (29
and R=Rot[P.w], . . . + . . (24
we have

8=%+ 3§+ € + R + Rot M.

Now, we might understand by the current in the ponderable body
the whole of this vector. Conformly to general usage we shall however
exclude from it the last term. We therefore define the current as
the vector

E=B+IF+EC+NX,. . . . . . . (25
so that

8=6+ RatM. . . . . . . . (26
We may call © the diclectric displacement in the ponderable body,
and B the displacement-current. As to the total current &, the for-
mula (25) shows that it is composed of the displacement-current, the
conduction-current ¥, the convection-enrrent € and the fourth vector i,
for which Pomxcars has proposed the name of Lintgen-current, because
its electiromagnetic effects have becn observed in a well-known expe-
riment of RONTGEN.

§ 8. We shall now write down the equations that avise from
(D—(V) and (1) if every term is replaced by ils mean value. In order
{o obtain these formulac in a usual form, we shall put

b=®,. . . . . . . . . @0

h—daM=PH, . . . . . . . . . (28)

daVir=C. . . . . . . . . (29

these quaniities being the magnetic induction, the magnetic force in the
ponderable body and the electric force in the body.

Beginning with the equation (I), and writing ¢ insicad of ¢, for
the (measured) density of electric charge, we find

Divd = o — Div ¥,

whence
DwvD=9¢ . . . . . . . .. @
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We may further deduce from (1), taking into account (I) and (II),
- Dipd =029, o
and conscquenily Div8=0.

Now the cxpression Rot3M we have found for the current that
is' equivalent to the maguetization, shows immediately that the distri-
bution of this current, taken by itself, is solenoidal. We Conclude
from this that )

Diw&€=0. . . . . . . . . (D

From (II) we may" deduce, if we mtroduce the value (26),

Rot D =478 + 42 Rot M,
or, {aking into account the relation
D=pH+daM ' _
which results from (27) and (28),

RotH=4dx@. . . . . . . . (I
Finally we find by (IV)
RotE—— . . . . . . . . (1MW
and by (V)
Divd=0. . . . . . . . . . (V)

We have thus been led back to the equations of the electromaguetic
field in a form that has long been known. In this form we may use
them without even thinking of the individual electrons. As soon however
as we seek to penetrate into the mecanism producing the phenomena,
we must keep in mind the definitions that have been -given of the
different quantities appearing in the equations and the manner in
which they are connected with the distribution and the motion of
the clementary electric charges. The formulae (27) and (28) e. g. show
the precise meaning that is to be attached in the theory of elecirons
{o the terms #magnetic force” and #magnetic induction”

The equations (I'—(V') may be applied to all bodies indifferently.
It is otherwisc with the formulae expressing the relation between
S (or D) and €, and that between B (or M) and H*); the form of
these depends entirely on the particular properties of the bodies con-
sidered. I shall not here discuss these more special formulae; in order
to deduce them from the theory of clectrons it is necessary to con-
sider the forces acting on the electrons in a conductor, the #molecular
motion” of these particles and the circumstances which defermine the
eleciric and magnetic moments of a single molecule or aton.

1) See Voigr, Elecironenhypothese und Theorie des Magnetismus. Nachr. d. Ges.
d. Wiss. zu Gottingen, 1901, Hefi. 3. '




