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Astronomy. — “On the periodic solutions of a special case of the
problem of four bodies”. By Prof. W. pr Sirrer. (Communi-
cated by Prof. E. F. vax pi Sanpe BAKHUYZEN).

The special case considered in this paper is that of a central body
and three planets, ov satellites, whose masses are small compared
with the mass of the central body, and whose ovbits are all situated
in one and the same plane, the mean motions (in longitude) being
roughly proportional to the numbers 4, 2 and 1. This special case
is realised in nature by the three inner Galilean satellites of Jupiter,
if the inclinations, the influence of the sun and of the fourth satellite,
and the compression of the planet are neglected. This latter restriction
is not essential, since the compression does not disturb the periodicity,
provided only the motions take place exclusively in the plane of the
planet’s equator.

Neglecting at first the relation between the mean motions, we will
consider the periodic solutions of the problem thus generalized for
the case that the masses of the satellites are zero, i.e. for the unper-
turbed problem. These may be divided into two kinds, analogous
to Poincarf’s well known classification of the periodic solution of
the problem of three bodies. In the solutions of the first kind (sorte
premicre of PoiNcark) the (unperturbed) orbits of the satellites are
circles, in those of the second kind they are Keplerian ellipses with
arbitrary excentricities.

The solutions of the first kind exist, if the differences of the mean
motions are commensurable, thus:

P, — Ty =PV, P, — Yy = gD,
p and ¢ being integers, mutually prime. This condition can also be
expressed by saying that the mean motions must satisfy a linear
equation of the form

av, 4 By, + , = 0,

where «, 8 and y arve mutually prime whole numbers, satisfying
the relation

a+B+7v=0
The mean motions can then be expressed thus:
v,=—c v —u V=0,V — X Dy =g » — %,

where ¢,, ¢,, ¢, are again whole numbers. We have then:
a=10, — G =1ty —o Y=06—¢
P=1¢ =20 g=c, —¢
Then, if we put
vt—=1 2t = v,
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and if we count the time from the instant of a conjuncfion of II
and III, and the longitudes from the common longitude of these
satellites for that instant, we have
Ay ==¢, T — v
Ay==c,T —
hy=c¢r—v4| K
( ad, + B2, + 3, = K.
After the lapse of the period
i 27 y

T ——

v

the velative positions of the four bodies are the same as for the
instant ¢ =0, the whole system being votated in a retrograde direction
through the angle =7 -

By a reasoning entirely similar to that used by PoiNcarg®) for the
solutions of the first kind of the problem of three bodies, we find
casily that the condition, that these solutions shall remain periodic
if the masses have small finite values, is

K =0° or 180°.

In other words, there must be a symmetrical conjunction or opposition
of the three satellites at the beginning of the period. *)

The reasoning by which the existence of these solutions for small
values of the masses is proved, fails in only one case, viz. when

P4
— — 0 or a whole number.
v

This exceptional case is analogous to the well known exceptional
case for the periodic solutions of the first kind of the problem of

three bodies.
For the special case of Jupiter’s satellites we have
¢=1 = —38, y=2, £=180°
A, =4z — v 4 180°
S, =2r—vw
Ay= T~ v
T=2, — 2 v=—21, — 22,
In the system of Jupiter we find that v is small compared with =."
We have roughly (in degrees per day):
» = 51°.0571 -
x— 0 .7395.

1) Les méthodes nowvelles de la mecanique celeste, tome 1, § 40.
%) See also Les methodes nouvelles, t. 1 § BO,

imt

Asrowrmino
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It is owing to this particular circumstance, that the motion of the
satellites can also be considered as a periodic solution of the second
kind, as will now be shown.

In the pericdic solutions of the setond kind of the unpertnrbed
problem the excentricities are arbitrary, and the mean motions (not
only their differences) are mutually commensurable. In other words
we have here x = (. g

If the masses are not zero, these solutions may also remain periodic.
In the perturbed motion we must then distinguish the mean motions
in longitude and those in anomaly. Let .

li=mt 4 l, be the mean anomaly
A=wvt+2, , , , longitude,
if then ar; be the longitude of the pericentre, we have
=1l +
dm,
v,_7t,+— n,=2¢c v

Inquiring into the conditions that these solutions shall remain
periodic for small finite values of the masses, we find again that
there must be a symmetrical conjunction at the beginning of the
period, i.e. for = 0. The angles

;M — Ty, x

llO lﬂﬂ ZSO -
must all be 0° or 180°. One of the angles [, (e.g. [,,) can always
be made identically zero (or 180°) by a convenient choice of the
zero epoch. There thus remain 4 angles, each of which can have
one of two values. We have thus 16 combinations which may a
priori be expected to give rise to periodic solutions.

., dm . ) , 2@
Now if —; Were zero, then at the end of the period 7'=—=—
v

10 20 — T3y

the configuration for =0 would be exactly restored, as it isin the
unperturbed problem. It is, however, sufficient to insure the periodicity

dm, .
of the solution, that the value of d—; integrated over a complete

period shall be the same for the three satellites. In addition to the
conditions of symmetry we have therefore the conditions

/‘ fd:;‘d— ——d—f—‘*d )

0

After the completion of the period the whole system 1is then
rotated through the angle — 7, as in the solutions of the first kind.
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The mean motions in longitude are the same as in the solutions of
the first kind, viz.:
Vi ==CV—H,

The mean motions in anomaly remain rigorously commensurable.?)

I will now restrict the discussion to the special case represenied
in the system of Jupiter, viz.:

e, =4 , ¢,=2 , ¢ =1

For the general case similar results will be found, which I do not
however at present propose to investigate.

Moreover I will limit myself to the consideration of small excen-
tricities, which is the only case that is of immediate practical value.
Whether the conditions (1) do also admit solutions with large excen-
tricities, is a question which can only be answered by a special
investigation.

Under these restrictions we find that out of the 16 combinations
satisfying the conditions of symmetry, there are only 4 which also
satisfy the conditions (1). For two of these » is positive, and for
the two others it is negative. Further, if the quantity

y—38h +22, =K
is formed for each of these solutions, it will be found that one of
the solutions with a positive z has K = 0° and the other has A= 180°,
and similarly for the solutions with a negative ». Of these four
solutions that with K = 180° and x positive (the case of nature) is
the only stable one.

These solutions of the second kind thus appear, on both sides of
the exceptional point % = 0, as the natural continuations of the two
possible solutions of the first kind (K =0° and K= 180°). Iu the
solutions of the first kind the unperturbed orbit is circular, the
perturbed orbit is affected by a ‘“‘great inequality”, with the argument
cr. In the solutions of the second kind this inequality appears as
an equation of the centre’). In the solutions of the first kind we
have the condition that the unperturbed excentricity must be zero;
corresponding to this the excentricities in the solutions of the second

1) These solutions are based on the same principle as those investigated by
ScawarzscHiLD (Astr. Nachr. 3506). ScuwarzscuiLp, however, only considers the
case of two plapets, one of which has an excentricity, and at the same time an
infinitely small mass. Consequently the orbit of the other planet, which is acircle,
is mot perturbed.

%) In the integralion by the usual method, this inequality presents itself as a
perturbation of the excentricities and pericentres.

Besides this “great” inequality there are, of course, a number of olhers, whose
arguments are multiples of -, which are the same in the two solutions
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kind are not avbitrary, but must be determined from the equations
(1). When the value of % is the same for both cases, the two solu-
tions are entirely equivalent.

In order now to investigate these solutions according to the theory
of PoincarE, we must write down the conditions of periodicity

- T
dE,
WP = = t =0
0

where for F; we must take 51lcceséively each of the elements of
the system. If further 3, be the small correction to be applied to
the value of 1 (for t=0) in the unperturbed orbit, in order to
retain the periodicity in the perturbed orbit, then the stability of the
solution depends on the roots of the equation

o, Orp, Oy,
aﬁl + 1 -8 6132 ....... ﬁ
a‘Pz alpz alp?
A (5)= 3. aﬂz—ljl—»s....a—ﬁn =0...()
0 l;Jn 0 Uj n aan :
—673: —aE . « e s -B_E; + 1 — 8§
If we put s=eT (or, approximately, 1—s=— a7"), then the

condition that the orbit shall be stable, is that all the values of o®
are real and negative (with the exception of one or more,” which
may be identically zero).
I will introduce the elements
Ly IL, L, m,

of which the meaning is

Li=m, Va; I =L 1 ¢

I, — mean anomaly

st; — longitude of pericentre.
_ Supposing the units to be so chosen that the constant of Gauss
and the mass of the central body are unity, the equations of motion

are:

aly _  dF alr; or
a0 i m
dl, oF dm, OF
dt oL; dt oI
IF'=F,—R
o m,* m,” m,’

2L® 2L} 2L,
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In the unperturbed motion we have
m* 1
L=mnt<+ b, nl:]j’;:ag"/g

and the constants @; must be snch, that

4

ny, =4 n,=2v Ny == MW
The integral of areas is
¢ — II, 4 II, 4 JI, = const.

By means of this integral we can eliminate 77,, and diminish the
number of degrees of freedom by one. For this purpose we introduce
G, = I, G, =11,

§1 =T — Ty G == Ty — Ty

The equations then preserve the canonic form. ?)

In forming the equations W, = 0 we need only those terms of £,
whose integral over a complete period does not vanish, i.e. those in
whose arguments the mean anomalies do either not occur, or occur
only in the combinations

Col=1, 21, I=1,—21,
of which the mean motions are zero. The constant term will not
be required in what follows. Of the others, we only require the
terms of the lowest degree in the excentricities. Thus, introducing
the further notations
T — X, =0, — 9, =0
Ty — A= g, =

we find that 2 can be replaced by

™, M,
R = {—AEIGOS(Z—I—Zw)—l—Be,cos(l-{—w)}_{_
aﬂ
m? mﬂ f
+ ” { — de, cos (I' -+ 2') + Be;cos(I' - )} = . . (3)
3
where
A=a (4 A® L 4,©)
2 -
B=2a (8 401+ 40 — I/__—ﬂ)'

The symbols A,(," have the usual meaning (LkvirRriER, Annales de
Paris, tome 1, p. 260, 262), and must be computed for the value

Y The integral of areas still exists, if the compression of the planet is taken
into account, provided only the motion takes place in the plane of the equator.
Also those terms of the perturbing function which are here used, remain the
same. The conelusions_reached below, thus can be applied unaltered to the case
of a compressed planel,
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¢ = (i‘.) b (”—‘) h (E) " — 0.630.
d n, n, 2

The coefficients 4 and B then are pure numbers. Their values are
A=+ 2.381
B=+4 0.964.

The meaning of the symbols &; occurring in.R is

L;— 1,
8;—-[/ 5T —sm 5 Pis

1
Ezz—éei

The expressions of the various differential coefficients of R' are:
or _2]/;, oR cwosgp; 1 OR
E—Wﬂj_timll/&; & 08

B 1 1393R

OM; — 4m, Vai & s
R  OR' OR OR OoR OR
06, om, om, 3G, om, O,

OF G_R’ oR oR' n R R > R
a, —a o, “aTaw w o T
R OR oR' dR oR
09, dw 0y,  dw ' da

The quantities 8, and ¥; will be supposed to be correlated to the

different elements as follows:
To: Liv Ly Ly, G Gyl L 90 9
corresp.ond: Biv By v By By s By s Bsy By By Biy B
and: Yoo Py Wy s Py Wy Po Wy WPy Wy WPy
If in R’ and its differential coefficients the elements are replaced
by: their unperturbed values, these funtions become constant. Con-
sequently the first terms of the developments of the functions ; in
powers of the masses are of the form

T
fDdt:T.D,
0

where D represents a differential coefficient of R' in which, after
the differentiation, the unpérturbed values of the elements have been
substituted.

Now we have

or approximately
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dLl aR’1 d Gl aR’t

EW @ g
The functions w,.¥,,¥,.¥, and ¢, therefore contain only
sines of linear combinations of the angles!, !, w, '. Further we have

oR' +2«3R R
T TR A
and therefore the equation ¥, = 0 is a necessary consequence of y, =0
and @, == 0. The four remaining mutnally independent equations
Y, =P, =P, =¢,=0 . . . . . . 4
correspond to what has in the beginning of this paper been called
the “conditions of symmetry”. If we put
L= —2l),=c¢ l,=(0—20),=¢d
w, = (m, - ), =8 o', = (7w, — @), =B
(the subscript O indicating the unperturbed value, or the average
value over a complete period in the periodic solution), then the
equations (4) are satisfied, if each of the angles
a,d B, g
is either 0° or 180°. .
These conditions being satisfied, we can, in the differential coeffi-
“cients of R’ (after the differentation) replace the angles I, o, ' by
@ d\ B B

The developments of the functions ¢, , . . . W, in powers of 3; are

1 PR NR R terms of
P, =1 Baale'l‘B'; W + .. +Blom + higher orders

and similar formulae for ¥,, ¥, ¥, and ¥,. Then we find easily
0'F,
¥, = T' B, —— + terms of higher order,
0L,*

and similarly ¢, and ¥,. These equations give g, = 8, =8, = 0,
in othar words the mean motions in anomaly (n;) ave not changed.
Finally we have

T
oR' oR' OR'
h=—fig =Ty + Ty
__ 7 OR' T R
P, = Fy7A + 31,

The equations ¥, =¢,, =0 are thus found to represent the
conditions (1), since

e T e e e e e

P i
e
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e

=

v mot————
R AR R R AT, T IR T R R e Sonm s R s T

—

Te——

= o™=



( 690 )

" IR
f o= T
dt é)]]z

0 \ hd

Fro}m the value (3) of R’ we find easily (remembering that

a~h=n=cr, =4¢=2¢=1) and »7T = 2x)

> T
1 (dr A
L = — ——-ldt:—-m,'?—l-—cosa,
2n) di a, &
o
T
1 (rdn, d B 8 a, 4 .
L=—| —dt=={m, — — m, — — (08 ,
P 2a]) dt 2| ‘e, s (@ + B) —m, ay & “
' T
o= (SZa Z s @ + B)
= — At = —imn,— c08 | .
U %m) & 1™, ‘
0
The conditions (1) can thus be written
o 2T %
le:‘.-,::Qa::—z—n:——;.

Collecting now the 16 different possible combinations of values

« R | d B2, L,
Ml oef0o°y 0°l 0°|—| O || impossible.
@10 0 0 180 | — | O | — ] conditional.
@lo [ o |18 |0 |—|4|~/|mpossitle
@1 o 0 | 180 [180 [ — | | 4 | impossuble.
®) 0 180 0 0 — | — | + | impossible.
(6) 0 180 0 180 | — | — | — [ possible.
) 0 180 | 180 0 — | 0 | — | conditional.
® 10 180 | 180 | 180 | — | O | 4 | impossible.
. 9 {180 0 0 0 + | — | 4 | impossible.
10) | 180 0 0 [ 180 |4 |— | — | impossible.
(11) | 180 0 180 0 -+ | O | — | unpossible.
(12) | 180 0 |180 {180 |+ | O | + | conditional.
(13) | 180 | 180 0 0 4+ | 0 | 4 | conditional.
(14 {180 {180 | © 180 4| 0 | — | impossibie.
(15) | 120 180 [180 | 0 |+ | 4 | — | impossible.
(16) 1180 | 180 |180 | 180 |4 |4 | 4 | possible,

-10 -
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of @ «,p and @, we [ind the following summary. Only those com-
binations can give rise to periodic solutions, in wiuch £ , 2, and £,
are of the same sign. The letter O stands for undetermined.

Out of these 16 combinations there are only two, (6) and (16),
for which the perturbed orbit can remamn periodic for all values of
the masses. There ave four: (2), (7), (12) and (13), for which the
periodicily is only possible if a certam condition mvolving the masses
is satisfied.

For all solutions we find from the equation 1, =

fl:: 4(11—4:6.225.
£, a, B

It needs hardly be pownted out, that this is only a rough approxi-
mation, the higher orders of & having been neglected. In the system
of Jupiter’s satellites we find actually (see these Proceedings, March
1909 M) & /g, = 6.77.

JFuorther if we put

a
P:usa—-ﬁA—I—le,
8

then we find, for the solutions (6) and (16), from ¢,, =0
g, 2P &g laP
&, B & 2m A
If the longitudes are counted from the apocentre of III, and the
time from a passage of III through this apocentre, we have, for
t =0, 7, = 180°, [, == 180°, therefore 2, = 0°. For the corresponding
values for II and I we find, for =0, for solution (6)

mx, = 0° m, = 180°
{,=20 ;, =0
2, =0 2, =180

K =2, — 82, + 24, = 180°
and = is positive. the mean motion in anomaly exceeds the mean
motion in longitude. This is the case of nature.
For the solution (16) we find:

a,= 0° x, = 180°
I, =180 I, =180
2, = 180 = 0
K = 180° * % negative.

13 The expressions there given are based on Soumrart’s theory. The quantities
.» which here appear as excenlricilies, arc thus there considered as perturbations,
and arc called z,, %, %s.

-11 -
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The possibility of the solutions \2), (7), (12) and (13) depends on
the sign of €,. In all these cases cos (e 4 8) and cos ¢/ are of the
same sign. Thus if we put

Q=u, 2 4 —u, B,
aa
we find that for positive values of @ the solutions (2) and (12)
can exist, (7) and (13) being impossible; for negative values of
(2) and (12) become impossible, but (7) and (13) are possible. We
find for these solutions:

Solution (2)

Solution (12)

7, =0° x, = 90° ;== W° o= 0°
=0 l,=0 l, = 180 I, =180
2, =0 2, =0 4, = 180 2, =180
% positive. % negative.
Solution (7) Solution (13)

m, = 180° =, =0° wr, = 180° o= °
I, — 180 [, =0 L= 0 [, =180
= 0 2, =0 2, =180 A, =180

% posttive. % negative.

All four solutions have K = (°,
For the solutions (2) and (12) we find

a_ o9 &_lag

& B & 2a 4
and for {7) and (13)

B_ _ oY t__lad

3 B &  2aq A

For Q@ =0 (or, if higher orders of ¢ are taken into account, for

a value of % in dhe neighbourhood of the value for which Q=0)
Uy

we have & — 0. The solutions (2) and (7) then become identical,

and similarly (12) and (13). We thus find that the two cases (2)

and (7) form together one continuous family, which exists for all

values of —. The same thing is true of (12) and (13).
mﬂ

Thus all that has been said above regarding the existence of the
periodic solutions has now been proved. It remains to investigate
their stability. For that purpose we must form the equation (2). We
introduce the nolations:
) 1 anRx 2 !
7:,; 0zdy = (ay),

l—s

TVm,

mz apaq - [P‘I] 1

O

-12 -
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where x and y represent two of fhe variables 4, ¢, and p and ¢
two of the variables L, G,. The quantities (ay) ave of the orvder
zero in the masses, the quantities [pg] are of the first order.

With the aid of the values of i, which have been derived above,
it is now easy to write down the determinant A(s). The differential
oy, 0'F,
08, oL}
remove this, and to make all terms of the same type also of the
sane order in the masses, the five lower rows have been multiplied
by m,. Then the five upper rows, have been divided by y/m,, and
the last five columns by m,}/m,. Finally every term has been divided,
by 7. The equation then becomes

coefficients such as will have m, in the denominator. To

—F Y 0 0 0 (hh) (bl (hly) (ha) (how)
0 —F Y Y 0 (i) (&%) (fols) (kg) (ags)
e 0 -7 0 0 (L) (bls) (lals) (hgr) (fag0)
0 0 0 —F 0 thars Cam) () 190) (9199)
G 0 0 0 —p (hgs) (ga) (faga) (910a) (G292)

=0,/5
E—[LL] —[LL] —LLL]~[LG) ~[LG) —¢ o 0 0 0

~[LLg] Ko—[Lyls] —[Lils) —[LeGi] —[LG)] 0 —p 0 0
—[LL]  —~[Lels] By -[Lsds] —(TaG] —{L:Ga] 0
- (L&) -[L&] —ILG]—-{GG]—{GG] o o0 o —
—[LGy]  -[LeGy] —(L4Gs] —[GiGe] —[GaGa]l 0

0
0 —p 0 0
0

0 0 0 —p

For brevity-we have put

- 3 3
K = — o If,:——?, K, = — = .
., a, fLy@y

To simplify the determinant (5), we may use the relation, which
has already been mentioned above,
1l o)+20¢a)+¢e)=0,
where & represents an arbitrary element. We perform the following
operations, which are bere, in order to save space, only indicated
(the ordinary figures refer to the columns, the roman figures to the
rows) :
To (8) add 4.(6) + 2.(7,, From (V1) subtract 4.(VIIJ)
w (VID) ,, 24(VILI),
W{IT),, 4(I) + (D), w (1) w 40),
v (2) - 2.(3).
The determinant then becomes divisible by ¢* and the columns
(3) and (8) and the rows (III) and (VIII) drop out. For the sake of

-13 -
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clearness I will, however, continue to indicate the remaining columns
by their original rotation-numbers.
Now we have?)

(@ b)) = (@), (9,9:) = (wow),

(hby) = — 2(4), (919,) = — (ww),

(lly) = 4l + @1, (9,9,) = (ww) + (w'0),
(l19,) = (lw), (t,g,) = — (lw),
(.9,) = — 2(lw), (.g,) = 2(lw) + (Vo).

By “means of these relations the determinant can be still further
simplified. We perform ihe following operations

To (7) add 2.(6), From (V1) subtract 2.(V1II)
w ()5 2:(0), oo () 2(2)
n (10) 5 (9, n (L8, X
o (7)o @7) o @ ()

If now the remaining rows and columns are rearranged in the
following order ’
1, 2, 6, 7, 4, 5 9, 10,
I, I, VI, VI, 1V, V, IX, X
then the equation becomes

—0 0 @ 0 0 0 (o) O
0 — 0 (@) 0 0 0 (o)
A, 4, —o 0 4,4, 0 0
A, 4,, 0 -9 4, 4, O 0
A@O=! 9 0 () 0 —p 0 (@w) 0 |=0-©
0 0 0 () 0 —p 0 (o)
Ay 4y U 0 A4y 4,y —0 O

Au Au 0 0 An A“ 0 -—@
where the meaning of the coefficients is as follows (I mention only
those coefficients that will be used below, those omitted all contain

m, as a faclor): )
A, =K, +4K, -+ terms of higher orders
4, =4, =—2K+ , ) T

A, =K, + 4 K, + "
4,y = — [G.G,]+ 2 [GIG,] — [G,6G,]
Au = [GlGn] + [GnGﬁz]

- [ngz]

1"

W

S

LS

I

44

1) These formulas suppose (i) ==(vw')= (!w)= (lo')==0. This is only true if
the fhird and higher orders of & are neglected,

-14 -
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The expressions [pq] all contain m, as a factor. Thus, in order
to derive the term independent of m, in the development of ¢, we
take all those expressions = 0. The determinant then becomes divisible
by o*, and is reduced to its first four columns and rows. Four of
the eight roots of our equation thus appear to be divisible by V'm,.
The first terms of the other four are the roots of the equation:

—0 0 s 0
0 —o 0 s

=0,
4,, 4, —o 0
An Au 0 —Q
or
o' — (4,5 + 4,, s) 0* + (4,, 4,, — 4°,) 8§ =0,. . . (M)

where we have put, for brevity:
=s, ()=5s.

The solution can only be stable, if the equation (7) has two real
and negative roots. Now 4,, and A,, are negative, and 4,, 4,,—4%,,
is positive. The necessary and sufficient condition that the equation
(7) shall have two real and negative roots is therefore, that both

s and s’ are positive. Now we have

®,
§ =

e,

Aelcosa——Be,cos(a—I-ﬂ)} Z
L ®

—

s :&;3 A g, cosa' — Be, cos (' + Bl)z
al

For the six possible combinations we find the signs of s and s’
as given below

@ | 0°(180 | 004800 | 4 | 4
(6) | 180 | 180 | 180 | 180 | — | — | unstabte.

@10 0 0 (18 O |+
mlo 180 (18 ] 0 [4!0
(12) 1180 | © 180 | 180 | O | — | unstable.
(13) {180 | 180 | © 0 | — | O | unstable,

47
Praceedings Royal Acad. Amsterdam. Vol, XI.

-15-
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The solutions (16), (12) and (13), i.e. those with a nega:tive value
of %, are thus certainly unstable. For (2) s will be positive if

Asg — Beg, >0.

By using the value of % found above, this leads to the condition
1
a, A
Q<2 i BT 7.41.
Similarly we find for (7) that s’ will be positive if

1 B
— —— = — 0.46.
Q> 5 46

For the family consisting of the solutions (2) and (7) we thus find
that s and s’ are both positive for all values of ( between the
limits — 0.46 and 4 7.41. For the Jovian system we find @ = - 4.14.

For the solution (6) both s and s’ are always positive.

This is, however, not sufficient to prove the stability of these
solutions, We must also consider the four remaining roots of our
equation (6). To determine these I divide the last two rows and the
5%h and 6% columns of that determinant by V/m,. Introducing then

e=0'Vm,, Ay =m, By,
the equation becomes

—p'V'my 0 ) 0 0 0 (lo) 0

0 —"V my 0 )] ] 0 0 (Vo)

Ay Ay ——p'Vmy 0 ByV'mg BuVmg 0 0

Aq Ag 1 ~p'V'mg  BgV'mg BV mg 0 0

A ()= = 0.

0 0 (lor) 0 —' 0 () 0
0 0 ] (") 0 e d 0 (w'w?)

~ ByuV'mg  Bul/my 0 0 By By, — 0
ByVmg Bl mg 0 0 By By 0 —¢

If now again we neglect all terms which appear multiplied by
V'm,, and if we perform the operations

(PN}

(lo) (l'o')
fom (7 it — . (3), from (8 i — . (4
From (7) subtrac @ (3), from (8) subtract ) 4,
we find
—o' 0 o 0
A, A 0 —po 0 o
A(g’):' S PV ¢ =0,
|4,, 4,, B, By, —0 0

-16 -



where we have put
2 w'y2
0 0 way — &)

6= (ww) — @ W .

We thus find that ¢’ is determined by an equation very similar
to (7). For the coefficients B;; we find easily

B, =H, + H,
‘ Bu:'Buz_Hz’
" B,=H,+ H, /
where
’ R 1 1 4
Hl_—:—a—gz-——— —— ¢0§ @1,
aH=1 165"'1‘11“2 5‘1
t
- 0*R 1 [ 23] B Mg A '
BT, T e, T T
) ¥R 1 1 B *
H —_— —_—— = —— —— ' : .
! oI, 16 u,a, ¢, ws (&1 8)

For the cases (6), (2) and (7), which are the only ones that we
need investigate, all these expressions are negative. For H, and H,
this is at once evident. For H, we find:

Sol. (6) Sol. (2) Sol. (7)
P Q Q
Hy=— 16a7,¢%,’ T 16a%,¢, 1646,

which is also negative in all three cases. The equation determining
the first term of ¢’ now becomes

o —{(H,+ H,) o+ (H,+ H,)o} " + {H,.8,+ B, H+ H,.H}oc' =0, . (9)

The condition that this equation shall have two real and negative
roots is again that ¢ and ¢’ are both positive. Now we have

l 3 U H"_‘
0 = (ww) — ( c:) , 0= (w'o')— -(—l%)\

It is only necessary to investigate those cases where s and s’ are
both positive. The conditions of swability thus become

\s(oww) > (o), s (wa') > (o)

The values of s and s’ have already been given above (8). For
the other quantities we find

47+
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( 698 )

(wuo)::u—1 4 4s cosa——Bezcos(a—[-B)i,

-

(v'w) = -? 4 As, cos ) — B g, cos (¢ -+ By

(lﬂ’;):& 24 elcosa——Bs,cos(a—I—{)’)I,

3

(l’w’):-lﬁ 24, cosa'——Be,oos(a’-]—B’)z,
aB
from which
5. (ww)= Z‘—s 447+ B'e, — SABels,cosﬁz,
2

(lo) :-%; 44%:° - B¢, — 4 A Be, g 0053 i
Therefore ’
5. 0= -—%AB@I &, cos B3,
and similarly 2 B
A s'.o’:—Z—":ABe,sacosﬂ'

3

The only stable solutions are thus those in which 3 and 3’ are
both 180°, and the only solution which satisfies this condition is (6).
This solution, i.e. the case actually occurring in nature, is thus
found to be the only stable periodic solation.

It needs hardly be mentioned that all the proofs given above
suppose, that the developinents in powers of & and m, converge so
rapidly, that the sign of the various quantities used is determined
by theiv first term. What the upper limits of & and m, are satis-
fying this condition, cannot be stated without a special investigation,
but nature teaches us, that for the values occurring in the system of
Jupiter the solution (6) still exists as a stable solution.

Physics. — “Contribution to the theory of binary miztures, XIIL”
By Prof. J. D. vaN DER WaALs.

We have considered the closed curve, discussed in the preceding
Contributions, as the projection of the section of two surfaces, viz.
¢ 2
ilB: 0, and ilE:_—O, constructed on an g-axis, a v-axis and a T
dx? dv?
axis. Let the z-axis be directed to the right, the v-axis to the front
and the 7-axis vertically. The projection of.these sections on the

other projection planes will now also be a closed curve, in general
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