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Physics. - "On tlte scattel'ing oj ligM by rnolecztles". By Prof'. , 
H. A, LORENT7. 

(Communicated in the meeting of January 29, 1!)lO) 

~ 1. H wab pointed out many yeal's ago by Lord RAY1JlHGII 1) that 
a b0am of light can be scattel'ed to all sides not only by particIes 
of dnst, but also by the molecnles of the medinm in whieh the. 
pl'opagation takes plaee. Aerording to his theo1'Y the coefficient of 
e:xtinction due to this eause in the caRe of a body of small density, 
u' gas for instance, is determined by the formula 

(i) 

in which {t is tlle index of refraction, J. the wave-length and N the 
J1umber of molecules per unit of volume, the meaning of the coef­
ficient ft itself being that {he intensity is dunmished in tlle ratio of 
:i to e-hl wh en a distance l is tl'avelled ove1'. 

RAYLEIGH has deduced his equatioll by calculating the enel'gy 
l'adiating fl'om the molecules whose pttl'tIcles at'e put in motion by 
the incident l'ays, and by taking into aecoLlnt that the qnantities of 
energy tl'aversing tlVO successive sectJOns lIf tbe beam mnst diffe1' 
ft'om eacIl ofhel' by an amount equal to the enel'gy that is emitied 
by tile molecules lying between those sections. 

J 
The pl'oblcm may, howevel', <llso be tl'eated in a different mannel'. 

111 many theories the ol'dinal'y absorption of light is explained by a 
l'esistanre opposing the mot ion of the vibmting particleb mld giving 
rise to a development of heat. Similal'ly, the extinction which we 
are 110W considel'ing may ue ascl'ibed to a cel'tain resistanee which, 
liowevel', is not accompanied w ith a heatmg effect, but is iniimately 
connecteà with the l'adiatjon from the molecules_ Accol'dillg la the 
theory of electrons 2) a force of th is kinu acts on an electron whel1mrer 
its, ~7elocity 1013 ) is yal'iable; it is repl'esented by tbe expl'ession 

6:ro3 dt 2 
(2) 

in which e is the charge of the electron, and c the velocity of light 
in the ether. 

1) RAYJ.EIGH, On the transmission of light through an atmosphere containing 
smaq partieles in suspension, and on the origin of the blue of the sky, Phil. Mag. 
(5) 47 (lR99), P 375 (Scientific Papers 4, p. 397), 
• -2) Seé, fol' instanee, LORENTZ, Math. Encyklopàdie, V, 14, § 20. 

3) German letters represent vector qualltities. 
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In tlle case of a simple harmonie motion the sign of the second 
diffel'ential coefficient of 1) is opposite to that of j) itseif, so that, like 
the resistance assllmed in tbe theol'y of absorption, the force (2) Js 
opposite to the \'eloeity. As to the connexion between this force an"d 
the l'adiation ii'om the vibrating electron, it becomes apparent if we 
rem ark that during a fuil period the work of the force which ~s 

required for maintaining a constant amplitude, and which must be 
eqnal anel opposite to (2), is exaetly equal to the amount of th.e 
radiated energy. 

In a recent paper NA'l'ANSON 1) bas shown that RAYLEIGH'S formula 
can lJe obtained lJy introdllcing the force (2) into the equation of 
motion of each vibrating electron. 

§ 2. This result is very satisfactory, but still there are some,points 
whieh require fnrther consideration. 

In RAYLEIGH'S theo1'Y it is neeessary to take into account the inter­
ference bet ween the vibrations which are produced, at some definite 
point of space, by all the molecules in the beam, and, on the other 
hand, a consideration of the resistances wiJl be incomplete if one 
does not keep in yiew the mutual action between the molecules. 
Whether we prefel' one course Ol' the othel', it may be shown thät 
a seattering ean only take place when the molecnles are irregularly 
distributed, as they are in gases and liquids; in a body whose 
molecules have a reglliar geometrieal arrangement, a beam of light 
is propagated without any diminution of its intensity. 

Let us begin witI! the seeond method, and let us observe in the 
first plaee that, arcoL'ding to (2), the resistance per unit of charge 
is givell by 

6nc' dt~ . 

~f r is the displacement of an electron from fhe position lof 
equilibrium which it has in a molecule, this expression may be 
replaced by 

e d3r 
----
631'03 dt3 

for which we mayalso write 

(3) 

if we put 

1) L, NATANSON, On the theol'y of extinction in gaseous bodies, Bulletin de 
l'Acad. des Sciences de Ulacovie, déc. 1909, P, 915. 

" ----~~="; 
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er = p. 

This latter quantity is the electric moment of the molecule, if 
e is the on I)' movable electron contained in it. 

The above expression containb the thi1'cl differentia1 coefficient of 
r or p with respect to the time, and it is easily seen that terms of 
this kind, or, in general, te1'ms of odd order, are the on1y ones in 
the equations determining the propagation of light whieh can give 
rise to an extinction of the beam. This eircumstanre will enable us 
to distinguish the terms with which we shall be principally concerned, 
from others which determine, not the extinction but the velocity of 
propagation, and which it will not be necessary to considel' in 
detail. 

§ 3. It IS important to l'emark that the ileld belongiJlg' to a molecule 
with an alternatmg moment p acts with a force like (3), not only 
on the electron e in the molecule itselt', but a1so on electrons lying 
outside the particie, at distances that are very sma.ll in comparison 
with the wave-Iength. 

At a point (x, y, z), at a distance r fi'om the molecule, the scalar 
potential cp and the vector potential II are detel'milled by (he ef}uations 

1 . [p] 
p= - - elw-, 

4n r 
(4) 

1 [elP] ll=-- -- , . 
'~:!lIJr dt 

. (5) 

in which the square brackets serve to indicate that, if we want to 
lmow the potentials for the time t, we must use the values of the 

r 
enclosed quantities corresponding to the time t - -. Hence, l))] is a 

o 
function of te, y, z, t, and we may wl'Ïte for the vector potential 

1 0[1'] 
l1=----. 

4;r01' at 
Now, if r' is very RmaU with respect to the wtwe-Iength, we have 

_ l' elp 1'~ d2 p 1,3 el3 p , 
[1'] - p - ~ dt + 202 dt2 - 603 dt3 T···· 

\ Fol' ,our purpose it will sllffice to consider the part ot' (p COl'l'C­

&ponding to the fourth term of this beries, anel the pn,!'t of .1 COl'l'e­
[ ~,] 

sponding to Lhe second term, In equation (4) (he lluantity 
l' 

IIlay the1'efo1'e be replaced by 
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'1'2 d3 p 
- 6c3 dt3 ' 

a vector whose compunents are 
'1'2 d3px 9,2 d3py '1'2 d3 pz 

- 6c3 dt3 ' - 6c3 dt 3 ' - 6c3 dt3 ' 

and whose divel'gence is 

1 (dapx d
3
py d

3pz) 
- 3c3 {IJ dt3 + y dt3 + z dt3 ' 

if the point from which ris reckoned, is taken as origin of coordinates. 
We have therefore 

1 (d3Px d
3

p1! d3pz) 
cp (=) 12:rc3 ,'l) dt3 + y dt J + Z dt3 ' 

dcnoting by the symbol (=) that tel'lllS irrelevant to OUl' purpose 
have been omitted. 

The differential coefficients of the quantity within the brackets 
with respect to ai, y, Z are 

d3px 

dt3 

so that we find 

Combining this with 

1 d3 p 
fJmd cp (=) 12.1t'c3 dtB· 

1 d2p 
a (=) - 4.1t'c2 dt 2 ' 

we are led to the expression 

6:7l'c3 dtB ' 

which has al ready been mentioned, for the force acting on unit charge 
1 . 

(which is given in general by - - a - gracl cp), 
c 

Simple examples may serve to show that this result agrees with 
the law of enel'gy. Suppose, for instance, that two molecules p]aced 
very neal' each other contain equal electrons vibratmg with equal 
amplitudes and phases along parallel straight lines. Then the flow of 
energy across a closed snrface surruunding the molecules will be 
equal to foUl' times the flow that would belong to one of the pal'ticles 
taken by itself. Hence, fol' each molecule, the wol'k necessary for 
maiutainmg its vibrations must be doubled by the influence of the 
othel' pal'ticle. This is l'eally the case because the l'esistance is doubled, 
eaclr molecule cOlltl'lbuting all equal part to it. 

-- ---- -=-_ ............ 
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Again, if the two vibrations have opposite phases, the amplitudes 
still being equal, the two fOl'ces acting on one of the electrons 
according to our formulae - one produced by the field of the 
electron itself and the other by the field of the other molecule -
wiII annul each othe1', But in this case the system of the two mole­
cules does not lose any energy by radiation. 

§ 4. The preceding considerations show th at a correct expianatioll 
of the extinction' - of light, by means of the forces acting on the 
vibrating electl'ons, can only be obtained by examining the mutual 
actions between the molecules. In order to take these into account 
I shall to11ow 1 the same method which I have used on previous 
occasions. 

We shall start from the fundamental equations by means of which 
the electLomagnetic field bet ween the electrons and even inside these 

l smaIl particles can be desrribed in all its details. Let l:l and ~ be 
the electl'ic and the magnetic force, Q the density of the electri~ 

charge, and 1,) Hs veloeily. Then 

div i,) = Q, 

div {I = 0, 
1 . 

1'Ot f) = - (;) + Q t) , 
C 

1 . 
rot i,) = - - h. 

C 

Any eleetl'omagnetic state which satIsfies these conditlOl1S mar be 
represented by means of a scalar potential rp and a veetol' potential 
\l, These are detel'mined by the equations 

tp=~J[Q]dS,. (6) 
4.71' l' 

(1=~J~[Qb]dS, 
4.7rc 'l' 

(7) 

in which th~ integrations are to be extended over all sr ace, and we 
~have 

_ , 

1 0.1 
b=--::\-g1'adp. 

C ut 

We may now pass on to the equations that may be used for a 
descl'iption of the phenomena in which the details dependillg on the 
mol ecu laL' structul'e and inaccessible to OUL' mea.llS of observa.tion 
,are o,mitted, We obtain these by simply l'eplacing ea.cl1 tel'm in the 
above fOl'IllUlae by its mean value over a. space S sUl'l'ounding the 
point considered, whose dirnensiO~8 are so srnall tlIat, in 80 fa.r as 
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it can be observed, the state of the medium may be l'egal'deel ai) 
the same at aII points of S, and at the same time so great that S 
contains a large nnrnber of molecules. A space of this kind may be 
calleel "infinitely small in a physical sen se" nnd the mean vitllle of 
any scalar Ol' vector quantity A is defined by the equation 

- IJ A=S AdS, 

in which the integration extends over the smal! space S. 
We shall suppose the medium to contain neither conduetion- nol' 

magnetization-electrons, but only polarization-electl'ons, i. e. clIal'geel 
particles whose displacement ti'om their positions of eqnilibrium 
produces the electL'Ïc moments of the molecules. Let q) be the electric 
polarization (the electl'ic moment per unit of volume). Then 1) 

Q = - divSV, 

Qv'=~, 
and, if we put ~ = (f (electric force), (f + 11 = 1) (elielectl'Ïe displace­
ment), i) = .1), p = cp, (i = ~, 

div ::i) = 0, 

div {> = 0, 

1 . 
1'ol -I) = - 1), 

C 

_ 1 . 
1'ot ~ = - - _I), 

C 

\ 

I. . . . . . (8) 

_ 1 a~ 
~ = - -; at - gmd <p. • • • • • • (9) 

In those cases in whieh the field is prodnced by polal'ization­
electrons only, we ha\'e by (6) and (7) 

cp=-- dS, 1 f [div SVJ 
4Jl l' 

(11 __ 1 f~[à13J dS '« - •• • • • • • • (10) 
4.7r'c l' àt _ 

In the first of these two equations it has been tacitly assullled 
that there is nowhere a discontinuity in the polarization SV. Whene­
ver sueh a diseontinuity exists at some surfaee (J, the equation must 
be replaced by 

cp = - 4~f [di; SVJ dS - 4~f:' ! ['l}1I2] - n\] Ida, • (11) 

1) Math. Encyklopadie V 14, § 30. 

7 
Proceedings Royal Acad. Amsterdam. Vol. XIII. 

::ze_ac 



- 8 -

1-1 

l 98 ) 

wheL'e n means the normal to the surface a, dl'awn from the side 
1 towal'ds tIle side 2. 

§ 5. The fundamental eqnations show that the field may be con: 
sidered ~s p1'od l1ced by the electrons rontained in the SOllrce oflight 
and in t he media t1'ave1'sed by the rays. Let 6 be a closed bUl'face 
in the medium with which we are concemed a.nd Iet. the value of 
~ a.t some point on the inside of 6 be decomposed into two parts, 
tbe first of IVhich (tl) is dne to a.11 Ihe electl'ons lying outside tbe 
sl1l'face, wbereas the seeond part (\~\) bas its ol'igin in tbe state of 
tbe medium within (J. This latter part can be determined by the 
equations (9), (10) anel (tl), jf, fol' a moment, we con fine ourselves 
10 tbe mat teL' enelosed by 6, with the vaIues of ~\ existing in it. 
Tben, cl\'a.wing the n01'l11al to 6 towards the outside, we have 1.\"2 = 0 
and we may wl'ite 

cp = ~J[;j3n] dG, • • • • • . • (12) 
47f 'I' 

if we omit the index 1 in Il.\l a.nd if we take for gmnted that the 
vibl'a.tions m'e t1'ans\'e1'se, so that cliv l) = O. 

Confining the integeation in (10) to the spa.ce within 0, we find 
fol' the serond part of ct 

1 iH! 
<f2 = - --; at -- gmd (j). • (13) 

As to tbe first part 
<r] = <r - (f2 

iL l'epresents the value which 'E would have at a point within the 
surfare, if we removed all the particles contained in it, ,vithout 
changing anything in the state of the matter on tbe ol1tside. 

In what follows we shall coneeive the cavity made in this war 
to be infinitely small in a physieal sense. But, nevertheless, we shall 
snppose its dimensions to be veey great in comparison with those of 
the space S that has been mentioned in the definition of the mean 
va.llles. U nder tbese cirel1mstanres and if we except those points of 
the c[wity whieh are very near the walIs, there will be no diffe­
renee between the mean value of band this vector itself. Hence, 
~l may be considel'ed as the rea1 value of \) within the cavity. 

~ 6. In order 10 find the laws of the propngation of light, we 
Imve to combine tbe equations (8) with the relation between î) 

(~l' I,j.\) anel <i, whieh can be dednred from the eqnation of motion 
of the electl'ons vibl'ating in the molecules. 
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We sha11 simplify by assuming th at each molecule contains 110 

more than one vibrating electron. Let us fix our attention on a 
single molecule .M aud let us uenote by l' the displacement of its 
movable electron from the position of equilibrium, by P = et· the 
moment of the molecule, and by 111 the mass of tlle ele(,(1'on. The 
forces acting on the electron me: 1. the quasi-elastic force, for 
which Wt' sha11 write - f~, 2. the resistance (3), and 3. the force 
e D, if D is the electric force prouuced at the plnce of Jlf by all the 
surrounding electl'ons. Now, aftel' having descl'ibed al'ound M. al1 
infinitely smull surface û, sneh as üas been considered in ~ 5, yve 
may conceive D to ue made up of two pal'Ls, the ,-ectol' Ql that has 
already been mentioneel, allel the part that is due to the molecules 
Q surrollnding ;lr and lying wlthin the surface (J. Let f:!q be the 
part contl'ibuted by onc of these molecules, anel let the symbol ;!; 

refer to all the molecules Q. Then, the equation of motlOn becomes 

d2 l' e dal' 
m dt 2 = - f \ + 6.1l'c3 --;Jtf + e(c.t -fi2) + e 2 bq • • • \14) 

and here, on account of what has been said in ~ 3, we may put 

1 dapg 
2 D (-) - '2- (15) 

q - 6.1l'c3 dt3 ' 

if we con fine ou1'se1 ves' to the resistances. 
The determination of the sum occurring on tlle right-hand êide 

would b~ a very simple matter, if the molecules we1'e arranged in 
some regular wa~T, if, for example, they occupied the points of a 
pal'allelepipedic net. In sllch a ('ase, t11e moment ~'q of any one of 
the molecules Q may be considered as equal to that of the pal'ticle 
.211 itseJf, for which we want to Wl'ite down the eql1ation of motion 
(because the dimensions of (}" are ver)" small with respect to the wave­
length). On the contral'y, Ül a system of particles having a,n irre­
gular distribution, uneqnalities may arise from the l11utual electro­
magnetic actions; this is easily seen if olle cOl1siders that the dis­
tance to the neal'est padicle is not the same for the different mole­
~mles. "On account of th is CirClll11stance, it would be vel'y diffieult 
accurately to ealculate the SUIn f01'- a liquid body. 

In (he case of a gas the pl'oblem becomes more simpie. lndeed, 
~t cau be safely assumed that in such a body the influence of the 
molecules on the propagation of light is rathel' feebJe. It is only in 
a smal! measure that the state in a definite molecule depeuels on 
that of the sUl'l'ounding ones; it is chiefly cletel'mined by the state 
of the ethel', alld this may be' taken to be nearly the same that eould 
exist if the beam were propagated' in [l, vac'uull1. Oonseqnently, in 

7,1, 
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the equation of motion of the electron belonging to a definite mole­
cule, the tel'ms expressing the aetion of tbc othel' molecules are 
sma11 in comparison witb the remaining terms, alld we sha11 neglect 
only qllantities that may be said to be of the second order, if, in 
calcllialing the terms in question, we reason as if tho moments of 
the molecules Q and tbat of 31 itself were wholly independent of 
the mutual ac.tioll between Ihese pal'ticles. But in ihis case all these 
moments would be equal to each other. Thel'efore, in calculating the 
sum in (15), we shall take each pq to be equal to the mean value 
of p fol' all the molecule~ J.11 C'ontained in an infinitely small space. 
Distinguishing mean values of this kind by a double bal' above t11e 
letter, and wl'iting v fol' the number of the molecules Q, i. e. fot' 
the number of particles, with t1le exceptioll of M, lying within the 
closeel slll'face (J, we may replace (15) by 

v d3j) 
2bg(=)--. 

6n:c3 dt3 

~ 7. It remains to considel' the electric force [2 dete\'mined Ly 
(10), (12) and (13). Let us put for this purpose 

['P] = llJ + tl, 
anel let each of the tlu'ee quantities cp, mand [2 be elecomposeel into 
two parts in a way corresponding to this formnla. The first part of 
(f2 depenels only on the val nes of llJ which are founel, at the elefinite 
moment t, on the surface (j anel inside it, and even if account hael 
to be taken of the changes of I)) from one point to anothel' - which 
can be representeel by means of the diffel'ential coefûcients of i.p with 
respect to the coordinates, it could be shown that the part in qllestion 
contains diffel'ential cóefficients of even order only, at least if the 
form of (J is symmetrical with respect to three planes passing through 
J.11 and pa,mllel to the plan es of coordinates. It will therefore suffice 
for ou!' purpose to cllnsider the second part of [2' and to sllbstitnte 
in (13) the "aIues 

. 1 JÛII q>=-4 -d(J • 
x r 

. . • • . . (16) 

a.nel 

1 J1 o,Q m = 4xc' -; at dS. . . • (17) 

lil the following transfol'Inatiolls, whose object is the detel'mination 
of 1!:2' the coordinates of the point 31 fol' which we want to lmow 
Cp, 21 and lf, are elenoted by [IJ', y', z', anel those of a point on the 
surface (J or within it, by [IJ,Y,z, 
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It mnr be remarked in the fil'st p]ace that (16) ma)' be wrÎtteJ1 
in the form 

ct> = ~ r (~ Da- + i D..1f + ~ Dz) cl S. . . (18) 
4.1Z' • a,v l' aV r az l' 

anel that here the differentinl coefficients with respect to :1-', y, z, miy 
be replaced by those with respect to a/, ;V', z' with the signs invertecl. 
In order to show this, pn t 

~x = /1 (.'IJ, V, z, t), ~'Y = 12 (,v, V, z, t), l-'-:: = 13 (,v, V z, t) 
nnd wi'ite fIX (,x, y, z, t) etc. for the pal'tial derivatives, taken fol' a 
constnnt t, of these expressions witl! respect to ,v, y, z. The vibmtions 
being transverse, we hê:t\'e 

J'IX (.x, y, z, t) + 1'2') (.1', y, z, t) + J'a: (.r, y, z, t) = 0, . (19) 

nlld n1so 

I',x(v, V' z, t - :) + f'21j (v, V, z, t - ;') + 
+ f'3z (v, V. z, t - :') = 0, . . . (20) 

because (19) is trlle fol' a11y value of t. 
Now, 

. tlx = ~ \ 11 (lIJ, V, z, t - .!...-) - ft (,v, v, z, t) I, 
l' l' I c I 
~,~ = ~ jt2 (lIJ, V, z, t - :) ~ 12 (lIJ, V, z, t) ! ' 
.),! =~lj~ ((IJ, V, z, t - ..:.) -Ia ({ll, v, z, t) I, 

l' l' \.. c I 
and, if this is substitntecl in (18), we get 1\vo groups of tel'lns, soma 

d cl · I I" , Q.~. t f cl I epen ll1g on t le exp lClt occul'rence 111 - e c. 0 a:, y, z an t te 
l' 

remnining olles arising fl'om the varinbility of 1'. Equations (19) nnel 
(20) show that the terme of the (h'st gl'OUp nnnul each othel', anel 
we mny l'eplace l1S) by 

qJ = l.,. 2-}(~ tlx + ~ Qy + ~ Uz) dS. . . . (21) 
4.11' a,v' l' ay' l' azl 

l' 

because 
a1' a1' 
a.vl - - a.v' etc. 

Let us next substitute in (21) (cf. § 3) 

l' a ~ 1,2 a2 • .p 1,3 a3 .p 
.Q = ['P] - lP = - ~ at + 2c2 at2 - 6c3 af + .. , . (22) 



- 12 -

1 tJ 1· f'f! t' 1 1'.... 0 I~ • ,I cl f' I I I W lere Ie Cl lercn Hl, C'oelllC16nts -at etc. m'e ll1uepen ent 0 ,'IJ, y, z. 

~ " 

Aftel' tbis expansion none of the 1e1'ms in::'::' contains a negative 
l' 

power of 1', and iu diffel'entiating (2-1) witb respect to Xl, y', Zl, as is 
necessary for 1hc eletermination of gmd ClJ, we ma)' effect tbe opcl'ation 
llnder tlJC sign of integration. '[bus 

--=- --+---+--- dS etc 
04> 1 jj( 02

.QX 0
2 

.Q1} 0
2 tl.::) 

o (IJ' 4.7l' 0,V'2 l' oa/ oy' l' a,lJ' az' l' " 

Ol', confiuing olll'selves to the part of this expl'eSSiOll cOl'l'esponding 
to t he last term 111 (22), 

a:p 1 fiP\P:t 
--(=) - -- -- as, etc" 

are' 12JTc3 at3 

i, o. ] Ja3~ - m·ad t (=) - --- - d S, , 12 3r (J3 ot3 

1 a 1 
As to the ter111 - -;; at' it will suffice to sllbstitnte in (17) the first 

term of (22), sa that 
1 a21 1 fa3~ 

- -z at (=) 4JT(J3 Tt3 d S, 

rr1le l'esult of OUl' calcnlation is 

o~,~ 
Ol', sinre - ma)' be considerccl as constant throughont the small 

iW 
space eneloRed by (J, if the magnitude of that space is clenoted by U, 

1 à3~ 
~2 (=) 6.7l'(J3 U af' 

Fmally, the equation of motion (L.J:) takes tl1e form 

cl~ r e (cl 3 ~ dap 03 P) 
111- = -ft' +- e ~ + -- -- + v - -- U - +}5" , (23) 

dt l 6.it'c3 ilt 3 dt 3 otJ 

whel'e 5eVel'tÜ actions of which we have not spoken anel whielt are 
not io be reckolled among the resistanees, are taken togethel' in tbe 
ter111 ~. 

~ 8. We haNe now to di5tinguish two cases, 
ct. Let the molecules have a l'egular arrangement iu snch a mannel' 

that cach oceupies lhe centre of one of a system of equal paral!e-



- 13 -

( i03 ) 

lepipeds which a.re formed by three groupl:i of planes. Jn this casè 
= 1 

th ere is no diffel'ence between pand l'. Fm'thee, if Nis the voltune 

of one of the elementary parallelepipeds, and if we take fo)' the 
space U a parallelepiped consisting of /.; elementary ones, 

~=Np, 

k 
U=-. 

N. 

By this the expression enclused in brackets in (23) becomes 

à3p 
(1 +v -lc)ät3. 

But, v + 1 being the total llumuer of particles in the space U, 
we. have 

v+1=lc, 

so that, aftel' all, there is no resistance, anel thel'e can be no c:x tinctioll 
of the rays of light. 

b. The case of an irregnlat· dislribnlion of the molecules is best 
tl'eated by applying cquation (23) to eacll of the molecules within an 
infinitel,v l:imaU space and taldng the m€'è:tn "nJne of each term. Slilce 

1-' = Np, 
N being the numbm' of molecules pel' nnit of \'olnme, we ge! 

d2r = _ e = à3p = 
m dt 2 = -jl' + e,! T 6.:1"03 (1 + v - NU)afj + Ü.. (24) 

Now, the munber of particles in tbe space U considel'eel in ~ 7 
was 1 + v, anel tberefore it would almost seem at fil'st sight as if 

· the mean value 1 + v were equal to ]V U. In fact, howe\'er, we 
have, in the case of an il'l'egulat' distl'ibution 

. (25) 

In order to see this, wc must remember that 1 + v l'epl'esenteel 
the total numbel' of particles lying in a space U tAat had been clwsen 
a1'ound a molecule Jl on wldch we had pJ'eviously fi:ced ow' attention. 
Let us imagine in the gas a volmne 11 very gl'eat in compal'ison 
with the infinitely small space U, anel let us conceive tbe .Nli 
molecules whieh this volume is to conlain, to be plttCed in it at 

· random, IlO difference being maele bet ween one part of space allel 
another. Aftel' having assigned its position to the first molecule, we 
choose arol1nd it tbe small space U and we ask how ma.ny of the 

· remaining NV -1 partieles will, in the mean, come 1"0 lie in that 
space, if the experiment of' pla.cing the ]V TT - 1 molecules in tile 
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volume V- is repeated many times. Obvionsly, this mean numoel', 

,,,-hieh we may take for v: is 

~ (NV - 1) = NU - ~ 

anel this may be replaced by (25), because U is a very small fl'action. 
V 

Our eonclusiol1 must theL'efore be that the coefftcient 1+v-NU 
in (24) bas the yalue 1, and' we may express this by saying tbat 
among the teems in (23) whieh l'epresent resistances, one only remains, 
name1y the term th at is due to the field belonging to the molecule 
itoelf which we are f'onsidering. 

Finally, in order to gi\'e a more convenient form to the eql1ation 
eN 

of motion (24) we sllt..I1 multip1y it by -, replacing at the same time 
m 

IIle vectol' N e ~ Np by ~. We s11all also pnt 

eN= 
-l~ = y \:P, 
m 

wh ere, with sllfficiellt appl'oximation, y may be considered as a con­
stant coefficient, and 

j _ 2 
--y -no' 
m 

In this way we are led to the formnla 

iP,:P e2 N e~ a3 :p - == - no2 <.).i + - I.f + --- , 
at~ m 6.n'c3m at3 

fl'om vl'11Ïch, if it is combined with (8), RAYLEIGH'S extinction coeffi­
cient can be dedllced. 

~ 9. Yve sha11 eOl1clude by bl'iefly showing that, like the methad 
which we have 110W followed, that of RAYLEIGH, namely the direct 
calculaLion of the enel'gy emittecl by the molecules, leads to a scat­
tering of t11e light, only fOl' a system whose molecnles are iL'l'eglllarly 
d istl'ibuted. 

Let us cOl1sider a bundie of parallel homogeneous rays, and let 
L be a line Ol' n vel'y na1'1'OW cylinder having tlle dit'ection of tbe 
mys, L1B a part of L very long in comparison with the wnve-Iength, 
ilP n line making n cel'tain angle wUIl AB, and P a poiot of that 
lino whose distnnce from A is many times greator than AB. We 
shn11 tnke tho UxiR of [IJ ::tlong .AB and we shall sirnpli(y by assnrning 
t1mt, fol' ca.ch molecule situaLed on the lino L Ol' in tbe nfil'l'OW 
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cylinder, the electric moment may be represented by an expl'essi?n 
of the form 

a cos (n t+ p), 

in which p is a linear function of x. The amplitude a may be 
regarded as constant, if we neglect the ~meqllalities that may arise 
from the mntual action between the molecules of a gas or a liquid 
(comp. ~ 6), and if we sllppose the extiuction along the length of A B 
to be very feebie. 

For one of the components of the light vector at P, so far as it 
depends on one molecule, we may now put 

b cos (n t + '1), 

where b js a constant, and '1 ,t linear function of x, and we have 
to calculate the sum 

s = :2 b cos (n t + q), 

extended to all the molecules. 

. (26) 

Suppose in the fil'st plare that 7.; molecules occupy efjuidistant 
positions on the line AB. Then the vallles of '1 form an arithmetical 
series qu '11 + b, '11 + 2 b, etc. and we ha\'e 

s = . b [sin Int + ql + (k - i) bj - sin Int + q1 - ~f::..j] = 
2 s~n ~b 

sin ~kf::.. = b -.-.1. -cos Int + qz + ~ (k-I) f::..l· 
sm 2f::.. . 

It appeal's from the first form that the resulting disturbance of 
equilibrium can be conceived as consibting of l.wo vibrations emitted 
by points near the extremities of the row of molecules, and the 
second form shows that, wh en the length of the 1'0W is increased 

b 
constantly, the amplitude of s remains comprised between + -.-- and 

s~n ~f::.. 
b 

- ~A' Though thel'e is a certain residllal vibration, its intensity 
sm 2L~ 

cannot be said to increase with the length of AB. 

~ 10. This conclusion also holds when the molecules of a gas are 
distributed in such a manner over lhe cylinder L that equal parts 
of it, separated from eacl! other by normal sectiolIs, contain exactly 
equal numuers of particles. Then, for an element dx, the number 
will be jclx, with a constant J, and we have instead of (26) 

• l 
s = bf f cos (nt + q) d,v = bf-,r-, [sin (nt + gil) - sin (nt + q')I, 

• q-q 
l bcing thc lcngth of A 8, aud '1', '1" thc extreme. values of '1. While 



- 16 -

( 106 ) 

l 
l incréases, tlle ratio -,,--, remains constant, and, like in the lOl'mel' 

q -q 
case, the resulting vibration may be considered as made np of two 
components emitted by the extremities of AB. 

In order not to encumbeL' Ollr formulae with this small residual 
vibration, I shall suppose the difference q" - q' to be a mnltiple of 2.7l'. 

When the distribution of the molecules is an irregular one, equal 
parts of the cylinder L wm not contain exactly the same number 
of particles, and we shall now show that these differences must 
cause a real scattering of the rays. Fo!' this pnrpose we begin by 
dividing the cylinder AB into a number of parts AA', A'A" etc., 
such that along each of them q changes by 23t'. Next, always using 
nOl'mal se<,tions, we divide each of these parts Ïnto a great numbel', 
say k, of smaller ones, all of equal length clx. Having done this, 
we take togethel' the first part of AA', the th'st of A'A", etc., con­
sidering their sum as one part of the cylinder AB; in the same 
manner we combine into a secO?ul part of it the second part of AA', 
the second of A'A", and so on, so that aftel' all the whole cylinder 
is dh ided into Ic parts of equal volnme. For all the molecules Iying "­
in one of these parts the phase<; of thc vibratiolls wllieh thcy Pl'oduce 
at the point P, may be taken to be eq\lal. Let the I.; phases be 
determil1ed by the quantities ql1 qz' ... qÁ, whirh form an arithmetical 
series. 

Now, if 9I1H2'" .91.. are the numbel's of molecnles contained in 
the k parts of the cylinder, we ha'l.'e 

8 = b [91 cos ~l1t + q1) + 92 cos (nt or q~) t··· + 9k cos (nt + qk)] . (27) 

A<,cording to what lias been said, this wOllld be zero if all tile 
nllmbel's g1> ,Q2' •. '9k were equal. Consequently we mayalso wTite 

8 = b [TL1 C08 (nt + ql) + h, cos (nt + q,) + ... + hk cos (nt + qk)], 

if we understand by hl' h~, .. !tlc the deviations of the numbers 
9l' 92' ... 9/c ft'om their mean value. We shaU denote this mean value 
itsetf by 9. 

The radiation across an element of sllrface lying at the point Pis 
determined by the square of s, alld 01.11' pl'oblem may thel'efore be 
put as followb: What will be the mean value of s~ in a lal'ge number 
of experiments in which, all other things l'emaining the same, the 
distribution of the particles is different, a number kg of molecules being 
each tin~e distributed at random over the k pal'ts of the cylinder? 

In considering this we must keep in mind that, amollg the num­
bers hl' h2 •• • /tlc th ere must always be neg'ative as wel! as positi\'e ones; 
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since AI + A2 + ... + hTc =0, neither the positive nÖl' the negative 
values wil1 predominate. . 

Now it is clear that the mean value of any product of two diirèl'en't 
h's, relating to any two definite among the k parts, must of neeessity 
be zero, in as mueh as there is no reason for a different probabi­
lity of equal Ol' unequal signs of those two dedations. 

lIencc, the mean value in qnestion becomes 

b2 [h/ cos2 (n t + ql) + h/ cos2 (n t + q2) + ... + hTcl cos2 (n t + qk)J, 

and on an average, for a full period, 

4 b2 (~ + h/ + ... -r hlc~)' 
But, by a weU lmown theorem in the theory of probabilities, 

""1,2-~ll- -7,2-(/ 
/·1 - /, ~ -. • - I·k - iJ' 

so that our result becomes 

~ kg b~ I 

showing that, in order to find the intensity of the radiation issûing 
from tbe cylinder L, we must mu1tiply the intensity 4 b2 th.at is 
produced by one molecule, by tbe 111lInber kEI of paeticles in the 
cylinder. This eOllclusiol1 can easily be extended to a part of the 
beam of any size. Indeed, ihe k vibl'ations occnrring in (27) mlltu­
ally destroy each other for the greater part by interference, and the 
vibration of which we have calculated the intensity is no mOt'e than 
a sm all residual distnrbance of equilibrium. lt may ha\'e any phase 
whatever aceording as the molecules happen to be disseminated in 
one way or another. Now, if a part of tile beam of any magnitude 
is divided into a number of cYFndel's L snch as we have considered 
in the last paragraphs, tJlere wil! be no connexion bet ween the 
distribution of the molecules in these several eylinders. The phases 
of tile l'esidual nbrations due to each of them will be wholly inde­
pendent of each other, and it will be allowable, simply to take the 
,sum of their intensities. 

Physics. - "Quasi-association 01' molecule-comlJlea.'es." By Prof. 
J. D. VAN Dlm WAALS. 

(Communicated in the Meeting of May 28, 1910). 

In (he Meeting of this Academy of Janual'y 1906 I delivel'ed an 
,addl'e~s on \'Vhat I t,hen called "Quasi-association". I delponstl'ated 
-that the phenomena, particularly in the liquid state, led to. the 

R1' a 
conclllsion that the eql1ation of s(a.te p = -- - - was 'nö[ iJl lla.1'­

v-b vJ 


