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I am occupied with the application of the above deseribed degra-
dation method to other sugars such as pentoses.

The more fully defailed communication will be given elsewhere,

T have. to tender my thanks to Prof. Branksma for kindly giving

me the opportunity to work in the organic-chemical- laboratory of

the University.

-

Leiden, February 1915. Organic-Chemical
: Laboratory of the University.

Physies. — “Theoretical determination of the entropy constant of
gases and liquids”> By H. Terropr. (Communicated by Prof.
H. A. LorrwNTz).

(Commuuicated in the meeting of Febr., 27, 1915).

§ 1. Introduction and survey.

If the entropy of an ideal gas per gramme molecule for the
temperature 7" and the pressure p is given by:

S=CylogT — Rlogp +a+C» . . . . . ()
in which R is the gas constant and C, denotes the heat capacity
under constant pressure assumed as invariable for the range of
lemperature considered, then @ is a constant remaining undetermined
in classical thermodynamics. This value has, however, a definite
value according to Nernst’s heat theorem, when namely the entropy
is defined so that it becomes zero for 7= 0 for the condensed gas,
i.e. for a chemically homogeneous solid or liquid substance, which
we shall always tacitly supposed to be done in what follows. Then
we can determine a from measurements of the vapour tension, when
we also know the course of the specific heat of the solid (or liquid)
substance also at the lowest temperatures®).

On the ground of a general definition of the thermodynamic
probability in counection with the hypothesis of quanta I have
derived the value of a for different cases in a previous paper?), in
which, -however, at first undetermined universal values z, z,. and ¢z,
still occurred, which I supposed to be =1, while others thought
they had to assign a different value at least to z").

~ -

' 1) The quantity C = 1% og;, e is generally called the chemical conslant of the gas,

Y H. TerropE, Ann. d. Pilys. 38, 434 and 39, 255 (1912). .
%) O. SAOKUR, Ann. d. Phys. 40, 67 (1913). .
\ 77\
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In what follows we shall now determine the entropy constant a
through the direct caleulation of the vapour tension according to
classical siatistical mechanics, hence for higher temperatures, while
we shall of course have lo know again the thermodynamie behavionr
of the condensed phase for very low temperatures; the latter is,
however, the case al present for solid substances on certain simpli-
fying suppositions. In {his way we shall not only get a direct
confirmation of the formulae given Dbefore (with 2=z =z,=1),
but shall also be able to establish the general ) definition of probability
(of conrse for higher temperatures) for gases and liquids, which
must be applied for the entropy determination.

As a further elucidation of the vesults found for mulii-aiomie
molecules e shall also insert a few hypothetical considerations on
the forces actink in the chemical binding between the atoms.

The main point in our considerations is the discussion of the
exchangeability of similar atoms and molecules and of the influence
of this on the thermodynamic probability and the entropy.

.

§ 2. Suppositions on the properties of the solid substance,

+ As we shall have to know the entropy of the solid substance,
and as we can only give this at present theoretically when the
motions of {he molecules and atoms consist of sine vibrations,
hence when the potential energy is a quadratic function of their
coordinates, we shall have to suppose this of our solid substance.
We may do this when the amplitude of the molecular motion is
slight on the whole, when the molecules therefore depart little from
their position of equilibrium. This. however, does not exclude that
some rare molecules possessing an exceptionally great energy .pass
over larget distances, for which the general assumption does not
hold, that they even now and then slip through between the
surrounding ‘molecules, or can detach themselves from the molecule
complex, and pass into the vapounr state, provided their number be
so small at the considered temperaturé that it may be neglected.for
the calcnlation of averages.

Qur assumption implies that the volume of the solid substance is
independent of pressure®) and temperature. The specific heat at
constant pressure .then becomes equal to that at constant volume,
whereas in reality it is as mueh as from 4 to 12 °/, greater at the
temperatures thal are to be considered. Though our theoretical

1) Of. however, the conclusion of § 3.
?) Large pressures do not occur in our problem,
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substance- in this respect differs more or less from a real substance,
yet this will not cause a very greal crror in the final result, seeing
that the difference is comparatively small. Tt seecms even probable
to me that when we consider a system approaching reality still more
closely whose vibrations are not purely sine shaped, an accurate
knowledge of the thermodynamic behaviour of it at low temperaiures
would lead us to no other final result for the entropy constant of
the gas, that thercfore the expressions to be fonnd possess universal
validity.

The thermal energy of a solid substance as assumed by us according
to a formula which has been aceepied and confirmed of late years,
is given by : i .

h;
— -+ const,,
lw

. T — 1

in which / and 4 ave the constanis of Pranck, while the summation
is to be extended over all the degrees of freedom of the system,

U=2=

each of a frequency »;. The entropy is then given by :
s
14U 7Lv[ 1 ——
— | = —=dT —_ - 3 — 1T
I T AT dT' = .7, . ]“z' It Zf)f/ 1 r y . (2)
] LT — 1

which for the higher temperatures, with which we shall be exclu-
sively nccupied in what fol]ows, passes info:

/n)
S=r 1—-l — |\ =% ... (8

in which 2 is the number of degrees of freedorn, and the line
expresses the mean value.

§ 3. Calculation of the vapour pressure of a monatomic solid
substance and of the entropy constant of the gas*).

Let us now consider a gramme molecule of a monatomic substance
consisting of N molecules. inclosed within the invariable volume J~
and_in temperature equilibrium with its surroundings. This system
may then be considered as part of a much larger one of the same
temperature. If ¢i,...,¢ax are the coordinates of the molecules,

1) A similar calculalion with the correct final result has already been published
by O. Stery (Phys. Zeitschr. 14, 629 (1918)), however with an imaginary solid
substance, which perhaps departs somewhat too much from reality. Nov is in this
way the occurrence of N! in the general formula (see below), caused by the
exchangeability of the molecules, made clear.

TR

X}
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D1, .., poy the corvesponding quantities of motion, then the proba--.
bility that at an arbitrarily chosen moment the system will be in
a slate for which tlie coordinates will successively have values lying
between ¢, and ¢, -+ dg,, ¢, and q, }dg, etc., and the gnantities
of motion between p, and p, 4 dp,, ete., will be given by : .
E
wd@ =w(p, .. N, ... dgsy=1T¢ ¥l dp ...dpn, . . (4)
in which £ is the energy of the system, and

.
T:fj; ' dp, ...dgsy

the integration being extended over all the values of the ¢’s within
the volume ¥ and all the p’s from — o tot 4 o.}) -

If we now assume that 7" and ¥ have been chosen so that part
of the system is- gaseous, the other solid, we may write for the
probability that the molecules 1 up to n (n inclusive) are in the
gaseous state, n 41 up to NV (V inclusive) on the other lnud in
the solid state, as follows : -

(‘ﬁv d G)_: I\j‘e_%jl—’clp1 e dgg,Je_ﬁ(@,l+1 codgy, . (B)

in which the 6n-fold integral must be taken with respect to the
gaseous part of the sy stem the 6 (N—mn)-fold one with respect to
the solid part. The volumes of both are determined by ¥ and the
volume of the solid part that is only dependent on N—.?) Further :

L 2
=g oy ey
is the energy of the gas,

’ ! 1 2 2
- 5':5,/)“}‘811"_”6: %(}73”_‘}_1 + .. p,;N)JF

3N 3N 3N
+2 ‘S‘a”gij—{—z bQL"l‘Z"'I""(/y
a1 3n41 31

in which N -—n=mn' is put, the energy of the solid body, so
et¢e¢=2UF ¢ and the a’s and /’s are constants ; — ¢ is the work
which is to be applied to detach a molecule resting in its position

) We may also say that the system, as it is at o definite moment, forms part
of a canonical ensemble, with modulug %7

) In principle olso other arrangements of the molecules than those of sohd
substance or gas are of course conceivable, at least for a short time; they will,
however, be so improbable, that they may be disregarded. Nor is it necessary to
consider a solid phase of vaiiable density.
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of equilibrium from its connection with the solid body, and to bring
it in the gas space, hence ¢ is negative.

We can immediately integrate with respect to the gas, through
which we get:

(\j‘de‘) =1L 2amkT)|n v’l‘j‘enﬁ cl:03n+1 voodgan, - .. (6)
K n

in which » is the volume of the gas.
Now we can replace the values ¢y41 to g¢sy (inclusive) by
variables ¢';,....,¢sv which are in linear connection with them,
S’ 311’
so that &, =4} .?fzt’;‘-' with all positive f’s, while &, = ows ..;pl ,
!

when p'; is the value corresponding to ¢'; hence 55 The quantities
?
¢ are evidently a criterion for the deviations of the molecules from
their positions of equilibrium.
As according to a known thesis dpy' ... dg'sy = dpspt . - . dgsn,
we get:

P,
m "t

l

- 8

1
’ 2—]‘;,(];2‘{-2

E e 2

[

T RT kT T
~€ dpsnd1 -« - daN=¢ ) @ , dpi' - .. dgae .+ (7)

When we however should simply integrate on the right with
respect to all the values of — o to --oc, and substitute the result
in (6), as being equal to the integral with respect to the leftside
member of (7), we should commit a serious error and arrive at an
absurd final result.

We had namely originally' o integrate with respect to all the
values of the ¢’s inside the volume occupied by the solid body. In
this those values ave naturally left out of account for which the
energy is very great, for which a molecule is therefore pretty far
from its position of equilibrium, as this according to the formula
for the probab)hty very rarvely occurs. The proportionality of the
energy with ¢, however, only holds for slight departures out of
the position of equilibrinm, and no longer when a molecule has got
so far that it ¢an pass between the neighbouring ones. This must
ractually occasionally occur, though very seldom, and in this way
‘two molecules can interchange their original positions, and each
molecule can successively be found at all possible points of the
solid body, and have a position of equilibrium which was before
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peculiar to another.?) This new position is a priori as probable as-
the preceding one.

As it is now tacitly assumed by simply integrating the righthand
side of (7) over the range from — o to - oo that a molecule cannot
Jeave its place, the thus obtained integral must still be multiplied
by n'/, this being the number of the mtelchannes possible between
the molecules of the solid body.

When this is taken into account, we find:

nle

( f wd G) =T¢ I @amilympul (1) I, . . (8)
n

. ) daim\ e
in which 17 denotes the product of the 3n" valnes ( 7 )
3

This is therefore the probability that the molecules {rom 1 to n
inclusive form a gas with the volume v, the n' remaining ones a
solid body with the volume v' = V —uw. %)

It is, however, of no importance whatever for thermodynamics
whether it is just the molecules numbered 1 up to n that are in
the gas state. What we want to know is rather the probability that
n arbitrary molecnles are in the gas state, the remaining ones in
the solid state. This probability, which we shall call W(n), is obtained

by multiplying the expression (8) by being the number of

__',’
different ways in which the XV molecules can be divided between
gas and solid body on the condition that always . remain in the gas.
We get:
we

(A
W) =1 ¢ BT @uukTYhnon (1) I . . . . (9)
n!

o . 1 7.
Bearing in wind that 5—[/~ is the frequency v; for the vari-
aft m
able ¢.', we may also write:

logy Win)y=log I + Nlog N — N—nloyn 4 n— T + $ nlog(2am) + Q 1
(10)

+ 4 nlog (kT) + n log v — 3u' log v + 31’ loy (KT'), s
in which log v is the mean value of logw,.

1) In this it is assumed that the energy reguived for a moblecule to slip thmugh
the surrounding ones, is not iufinite; at any rale it 1:, howavu, possible 1o imagine
thie inlerchiange of the molecules to be brought aboul by cvaporation and renewed
condensation, which must 1ecally continually lake place at lhie surface.

?) As we have assumed the density of the solid substance to be invariable,
v=V — v is determined by s/, and thevefore by a.
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« In order to find the most probable distribution of the molecules
between gas and solid substance for given values of 7' and V|
which is the only one that need be considered for the thermo-
dynamical equilibrium, we must see for what value of n the function
Wn) is a maximum, so that ¢ W =0, or what comes to the same
thing dlog W=0.
! U ! 1 4
As d'n’:—dn,(—fzz——v—. ij3:—_1)——1 -(i?E:—]—i —dj,f,ancllis

v v v v n v N

independent of 1, we get the equation :
/;, - 5 log (zem) + loy v -+ n—? + 3logv — 3loy (£T) (11)
v nv

We know from the ordinary kinetic gas theory that the pressure

nkd’ .
p of the gas is —, on account of which we may write for (11):
v .

0= —loyn+

!

= ]c(;' + slog (Bawm) —log p -+ nly)TLiT

The entropy S’ of a gramme molecule of solid substance is now

0 + Sloyv — Flog (AT) . (12)

Iy
' 2) =BEN (1 —loy — ).
(see § 2) =3k (1 loy 70.’[’)

Equation (12) then becomes:

v S ) o o
nj';ﬁ_l‘ —;—.1_\7’*‘ $loy (BT) — Bloyh -3 (1)

It is further clear that the increase of the internal energy-at the
evaporation amounts to*j:
U=— No¢+ $kNT — 8kNT'= — No — FENT. . . (14)
If S is now the entropy of a gramme molecule of gus, the increase
of entropy at the evaporation is:
N N
U+ (—'— v — - U’) .
S — n n —__.fo 1/‘N_£_pv
- T - T e w1
We finally find for S from (13) and (15):
S =kN{3 loy (hT) — loy p + 3 log Bam) — Blog h 43} . (16)
Konner and WinrerNinz®) have calculated the chemical constant
of hydvogen for low temperatures, in which this behaves as a mona-

0=+ $log @am) — oy +

(15)

4
., U
1) On account ol the constant density et
% A possible zeio point cnergy had Lo be simply taken intv account in ¢ heie

and in the following §§.
3) v. Kouxir und P. WinTenNrrz, Phys, 4.8, 16, 803 and 645 (1914).
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tomic gas ), from thermochemical data; they have found with the
atmospliere as pressuve unify: .
¢ =—1,303
with an uncertainty which they eslimate at most at + 0,15. They
calculate from (16): ‘ :
C=—117, :
which may be considered as a very satisfactory agreement. -
On the other hand O. Sterx®) has also derived the entropy of
monatomic gaseous iodine from thermochemical data, and fonnd a
value which very greatly deviates from that following from (16).
He infers from this that either the heat theorem is not valid for
the reaction 2I,,n¢ == I sond, that therefore the difference of entropy
remains finite for 7= 0, or that the vapour tension of monatomic
iodine cannot be accurately calculated with the aid of (16). He
seems to think the former rather probable. It seems to me that they
come to the same thing. It may namely be very well the case
that the heat theorem only holds for substances that really exist,
and this cannot be said of monatomic solid iodine. Then the calen-
lation of the vapour tension as we have carried it out in this §,
has no longer any meaning: monatomic gaseous iodine cannot exist
at low temperatures either. The formulae of this and the following
§§ for the entropy constant can lay claim to validity only for such
substances as also occur in the same molecular form at low tempe-
ratures, as the gases of the He group, the metal vapours, further
also gases as H,, 0,,CO, I, etc.; but not gases as I,'Br or such like
ones. Of course the possibility continues to exist that an unexpectedly
great error occurs in the data used by Srtern.

§ 4. On the vapour pressure of a diatomic solid substance and
the entropy constant of the gas.

In a corresponding way the vapour pressure of a diatomic stib-
stance and the entropy of the vapour can be calculated, when it is
assumed that here too the atom wmnotions consist of sine vibrations,
while moreover the two atoms of one molecule are always at a
definite distance from each other’) as they also are in the gas for

1) A. Bucken, Sitz. Ber. Berl. Akad., 1 Febr. 1912,

%) 0. SrerN, Amn. d. Plys, 44, 497 (1914).

% When the possibility of existence of the solid substance lalls below the region
within whiclr classical mechanics may still be applied to the rolation of the mole-
,cules, the caleulation has of course no diveel meaning, and it will be preferved
to follow anolther method; see § 5.

A possible mutual vibration of the atoms with a zero poiul energy +hy would

'
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» an extensive temperature 1-egion, so that the molecule has five degrees
of freedom. It is. then still necessary to assume that at a definite
point of the solid body which is to be thought as a crystal, the molecule
axis passing through the centres of gravity of the atons can only have
one definite direction, from which it will of course deviate periodi-
cally by small angles on account of the heat motion. If the two
atoms are then still supposed to be different, so that the opposite
direction does not mean the same thing, and is therefore not possible,
we find for the entropy of the gas®):
S=kN{Zlog(k1') — logp -+ $log(Bam)+ log(2xSV— B logh+ log(4)+ 5}, (17)
and for the constant a

O oty bt 3oy 2 oy 2 by by . . . (19)
B w L
in which o is the principal moment of inertia of a nnolecule, of
course for an axis which is normal to that passing through the
centres of gravity of the atoms.

If on the other hand we assume the two atoms in the molecule
as perfectly equal and indistinguishable, so that at any point in the
crystal the axis of the molecule might as well be rotated by 180°,
we find for S, vesp. @ a LN Ilog2 smaller value. In the formula
analogous with (8) we get then namely 27 7'/ instead of n'/.

In reality we shall have to assume at least in most cases, that
also 2 similar atoms in a molecule perform a different function, e.g.
that one is positive, the other electrically negative, ov else that the
molecule possesses a maguetic moment, that they are therefore indeed
to be distinguished and the molecule can only have one direction at
any place in the erystal. Then the formulae (17) and (18) will be
universally valid.

§ 5. On the dissociation of di-atomic gas molecules.

We can come to the same conclusion when we investigate the
dissociation of a di-alomic gas slatistically-mechanically, and assume
the formula (16) for the entropy of the mon-atomic components to
be correct. ' :

We must then assume that the atoms in the molecule vibrate
against each other with a frequency », so that the energy of the

render the distance variable by only a praclicully insignilicanl amount for mole-

weules  consisting ol heavier aloms; for hydrogen this would, however, be consi-

devable (The value ol » may be caleulated from the specilic lreal al lLigh tempe-

raluves, the moment of inerlia from BuckeN’s experimenls und formulae (16) and (17).
b For the caleulation cf. §§ 6 and 7.

-10 -



1176

v - .
— - const. according to the formula of

vibration hecomes =

s
v |
Pravck-EissteiN. It could be neglected for the temperatures that are
to be taken into account for the evaporation®). For very high values
of the energy of vibration, which, however, will be so rare at not
too high temperatures that they may be left out of account in the
calenlation of the mean value, the mutual motion of the atoms is
no Jonger a simple sine vibration; and at still greater value of the
energy the atfractive force between the atoms becomes very small,
they get detached from each other, and the molecale is dissociated.?)
We may imagine thai each of the (spherical) atoms has a pole,
and that in the molecule the two poles coincide or are removed
from each other a small distance through the heat motion, however
in such a way that the axes of the two atoms passing through pole
and centre are alway$s in the prodnction of each other.
When the atoms are of different kinds, say A and B, we tind
for the constant of equilibrium of the reaction ABZ2 A 4 B*):

Iy
¢

S rame Y L dme Ly AT
7, my -+mp J A 2 2

in which 7, resp. n, is the number of split resp. unsplit molecules
per volume unity, my and mp the masses of the atoms, and J the
moment of inertia of the molecule. ¢ is the heat of dissociation, as
it would be for the absolute zero.

For lower temperatures this reduces to:

2 _ L, v\ TN\ &
Moo T mams YL N0
n w(-+mp ) 2Jh\ 2x

1

1

On the other hand according to thermodynamics:
w, — 13\2-1
—=Ae MTC — B
"y ¢ (l:T) k (21)

ad tap-aqn
R

in which lg 4= , ¢ has the same meaning as in (20)

—_—

1) 1f namely a possible zeto point energy is not 0 greal that the moment of
inertia becomes variable i consequence.

%) In reality it may of course occur thal the vibrations arc already no longer
sine-shaped for swall values of Lhe cnergy; it is, however, nol possible for the
present to take lhis inlo account theovctically.

3) J. D, vay DER WaALs Jr., these Proceedings XVI, p. 1082,

-11 -

-
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and ¢ is the algebraic sum of the heal capacities of lhe reaciing

gases at constant pressure, divided by R, i.e. =% + 4 — %=

ay, ap and aqp are the entropy constants of the gases defined in (1
By equating (20) and (21) we find :

slogm g 4 Flogmp—3logmap —log 2J) —log h - Llog (/»fl) —%log (2a)=

)

19

ap aAB
=2TE R
in which mgp = m4 -+ mp is the mass of a molecule AB.
When in this we substitute for a4 and ap the values following
from (16) and (L), we find:
%}; =logJ + Llogk — 5log h 4 $log m g +5log 2 + §logar,

+ 3 log T—log £,

corresponding to (18). ,
When, - however, we assume the two atoms to be of the same

kind, we shall find a value of half the amount for the dissociation
2

n
constant =" in the kinetic calculation : the probability that two atoms
ny :

meet that can unite is now namely twice as great as before, all the
rest remaining the same.

Thermodynamically we find, however, a four times smaller value :
. (2n,)* . .
in (21) must then be suabstituted for

nl n,
remaining unchanged. In this case, just as in the preceding §, we
should, therefore, find an R loy 2 smaller value for a4p.

As, however, as was said above, it must be generally assumed
that two similar atoms do not perform the same function in chemical
combination, we shall have to give a somewhat more general form
to the suppositions made by van per Waars Jr. about the chemical
forces. We suppose every atom to possess two poles, a positive and
a negative one, and that in a certain combination of two dissimilar
atoms 4 and B always e.g. the positive pole of A gets in contact
with the negative pole of B. In a combination of two similar atoms
the positive pole of the one will always be connected with the
negative pole of the other; in this case it is of no consequence,
however, which atom js connected through its positive, which through
its negative pole. This makes the number of possibilities of binding
still 2 X greater than for dissimilar atoms, and the change of coming
together Dbecoming alveady 2 > greater through the were fact of
the atoms being equal (scc above). it now becomes 4 X greater,
which is in harmony with the thermodynamic formula, so that also
in this case we have to assign the value (I18) o aqpn. - . ;

n n
al %, the righthand side

-12 -
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It should, however, be kept in view that the suppositions on the
chemical forces used in this §, possibly do not suffieiently agree with
reality; nor do they any longer appertain to pure classical mechanics:
we have, namely, assumed that in case of a chemical binding the atoms
must have a definite relative orientation, though we have not spoken
at all of a rotation of the atoms. We might imagine other repre-
sentations of the acting forces, but the one used seems to me the
simplest and the most obvious. After what Dbas been said at the
conclusion of § 3,.it will be clear that the application of (16) is
probably mnot permissible for the entropy of the monatomic compo-
nents, viz. in the case of one kind of atoms.

The contents of this § is then only interesting from a theoretical
point of view, viz. to show how the same result as in § 4 can be
found in another way too. A third derivation of the entropy constant
of the rotation for di-atomic molecules has been given by O. StErN?)
by the aid of Laneuvin’s theory of paramagnetism. From this
we see that this derivation only holds for the case that the two
atoms do not perform the sume function. The result agrees with
ours.

§ 6. General jformula for the vapour pressure of a multi-atomic
solid substance and the entropy of the vapousr.

We will now calculate the vapour pressure of arbitrary multi-
atomie¢ solid substances in an analogous way as we did in § 3 for
monatomic ones. We then only assume (for simplicity’s salke)?®) that
the vapour is an ldeal gas-ie. a gas with independent molecules,
whose energy, therefore, does not depend on the volume; the specific
heat, however, may indeed vary with the temperature, if only
classical mechanics remain of application. Hence the internal mole-
cule movements need not exclusively consist of rotations and sine
vibrations. For the solid substance we continue, of course, to con-
sider the suppositions of § 2 as valid, to which we may add, as in
§ 4 that at every place in the crystal the molecule present there
can only have one definite orientation.?)

Thus we find for the probability that % of the NV-molecules belong
to the vapour, the formula which is analogous with (10):

1) 0. StErN, Ann, d. Plys, 44, 497 (1914).

9 It is shown in § 8 that the formuls to be lound lor the entropy holds just
as well for non-ideal gases and for liquids.

§) The impossibility of anollier orienlalion must ol course be understood so that
a very great cnergy would be required for this.

-13 -
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n'e
log W(n) = log T + log ® —— - Nlog N—N l
g Win) = . = g R
—nlogn 4 n - ' log (k1) — ju' log », ,

in which j is the number of degrees of freedom per moleciile,

'Il:f..ﬁvﬁdp]...dq,n

and the other quantities have a meaning corresponding to that which
they had before. ¢ is now of course the whole energy of the n gas

1 . .
molecules, T the jN-fold integral

_r

As 3n of the jn coordinates of the gas molecules denote the
positions of the molecular centres of gravity, they do not occur in &;
in consequence of this and on account of what was said above @ is
of the form: "

=" [f(D ~ « -« . . . . . (23
in which the fanction fis a (2j)—3)-fold integral referring only to
one molecule, which therefore besides on 7', depends only on the
mechanical constants of the molecules. It follows from this that:

E_).(_p:ﬁ &b, or Olog‘I):n S (24)
o v

0 log v

The equation for the most probable value of n, hence for the
thermodynamic equilibrinm becomes:

dlogd ¢ S
= — —logn — jlog AT)+jlogr. . . . (25
0 o T g n— i log (kT) - log 2 (25)
Now :
d log @ 0 log D 0log &\ dv 1 n v fdv
—— ‘ 1 : — = —log P TS
dn ( on ),T ( ¥ Jodn a7 + v oa (dw '
just as in § 3). '
Hence we get:
1 n ’t)’ ¢ 3
0=—logd 4 —. —+ — — 1 log—. . « . (208
A T A (6)

The entropy of the solid substance is:

7
S’:]ch(l-»-Zog%) N 14

Further:

-14 -
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(N N )
r pl—r—=v
§— 8= — M+E_LJN+____—_~" T”

when £ is the energy of N molecules of gas

N 1 “ ,
N lIJ f;p apy - dgjn N 1Y

When it is borne in mind that pw =1Zn 7, it follows from (26),
(27), (28), that: -

S=—kNlogn + ]L:—I\Tlo'r/ D — 1 N‘la’qﬁ + g + EN, .
or when for the sake of simplicity we put n= N:
S=Fkiog ®— kNlog N + N + %-— ki Nlogh, . . (30)
Hence the frec energy is:

F=FE—TS= — kTl —— (1)

b
LINN 7

We find for the free energy, either by substituting the value (29)
for I in (30}, or by differentiating (31) with respect to 7':

. \
S§= —~ k‘ﬁ'lngfa’G —klog (haN)y — klog(NY),. . . (382)
in which: )
L %
s° " =f en dp,...dg;n=dG

§ 7. Caleulation of the entropy of gases with arbitrary rigid
molecules. - .

We will now apply the formulae (31), resp. (32) found in the
preceding § to two simple cases of general occurrence.

We can of course (irst find back the formula (16) of § 3. We
further find for a gas, the molecules of wlhich possess two rotation
degrees of freedom with the moment of inertia J, and will be rigid
for the rest:

an

+]V log4n)4- 5N (33)

S=Fk {% Nlog - —[— loq + Nlor/

which formula we already meet in §§ 4 and 5.

For rigid molecules with three rotation degrees of freedom and
the chief moments of inertia J,, J,, and J,, we find:

-15-
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2amkT ( 2o T
S="% {2 Nlog amel +lor;— 41 N]oq—ir——r—
¥ N B
AT T il - G
43 Nl 2T Ly 1o 2T LS 4 N (8a%) + 3N \

Withont cntering further into the calculafion it is yet easy to see
the analogy of the formulac (33), (34), and (16). If we write the
last in the form

S="=% {3 Nlog ——}—Za(/——f« N

2ami T ;
we see that in each of the three expressions per degree of freedom
YA

2amkT ALY,
P occurs, ac-
h

resp. + NV log

first of all a term & .V /og

cording as it is one of 1ect111nezu or of 1otat013 motion. For the
three degrees of freedom of rectilinear "motion moreover a term

v
]0(/—— is everywhere found. In this » is the three-dimensional ex-

tension of the coordinates denoting the place of the centre of gravity
of a molecule, while the division by N/ is caused by the inter-
changeability of the molecules, as has been fully set forth in § 3.

We find in (33) 4a instead of v and in (34) 8a’ for the rotatory
motion. In (33) 4x is the two-dimensional extension of the angular
coordinates, which indicale the direction of that axis of the molecule
round which it does not revolve, while in (34) another factor 2«
is added, being the extension of the third angular coordinate, whieh
denotes the revolution round the said axis, which now, indeed, does
take place. Finally there is everywhere still a term & .V per degree
of freedom.

§ 8. On the general (lafmztwn of the thermodynamic probability
for gases and liquuds.

We know from ordinary statistical mechanics that the changes
of the expressions (32) and (31) denote generally the change of the
entropy, resp. free energy for changed values of ¢ and 7. As they,
as we have seen, indicale for a system in one definite condition
(ideal -gas), the absolute values of S and I, (i.e. those with the
accurate additive constant), they will have to do this for all condi-
tions. In this it should of course be taken into account that & for
smaller values of » can also depend on the mutual distances (and
possibly orientations) of the molecules.

The formulac (31) and (32) are thercfore of general validity on
the suppositions made, also for non-ideal gases and for liquids,

-16 -
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which latter can namely be formed from gases in a continuons way.
They would also have to hold for solid substances, when these were_
considered in the same way; as it is however customary to consider
the molecules in this case as not interchangeable. N! resp. the term
with Jog (/) must be omitted. This is namely the case when the
solid substance is imagined as a system of fixed “oscillators”.

Thpugh properly speaking we have only generally proved the
formulae on the assumption that the system can pass into an ideal
solid body without loss of degrees of freedom, it yet seems plausible
that a general validity may be ascribed to it.

We have, namely, seen in § 5 that it may also be derived in
another way for a definite case, and the conclusion suggests itselt
that ' this will also be possible in other cases. We have, however,
at the same time learnt to know the probable limits of the validity.

If we want to drop the supposition that no indistinguishable
atoms occur in a molecule, we shall have to add still a term
—kNlogp to (32), when p is the number of different ways, in
which a molecule can be made to cover itself.

We can finally give still another form to (32). When the integra-
tion is veplaced by a summation, and when in this dG'= ¥ is
always put, we get:

S=—kZfdGlog(f,d &) —klog (N)—klog (pN). . (35)

When a canonical ensemble consists of so great a number M of
systems that the number M,—= AM[f,dfF, lying in an elementary
region dGf is a large number, we can write:

MS=—kZMf,dG. log (Mf,dG;) F kM log M—kM log (N!) — kM log (p¥)=
M! :
pMN (NN, M /MM, . .. o

This being the entropy of a system of MV molecules, the ex-
pression must only depend on the product MV, independent of the
way in which this has been separated into factors. This may be
seen still better as follows.

When in (35) NV is veplaced by MW, we get according to (23):

DN = v‘lﬁs LA MN — (Mon) MN [A(D)] MN — JMMN pMN,

k log (36)

Hence
¢
(e 7_:7 4 ?ZIV
® | yy=MHN
because when corresponding elementary regions are compared, exy = y.
Fuarther dGiyy = hiMN = (dGin)M.

Sinn =

-17 -
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-

Then = f,dG, taken over an arbitvary group of elementary regions,
is the probability that the system lics in one of them; when this
group is now chosen so that the interval eyy corresponding to it
becomes equal {o the M-fold of that of the group of a system of .V
molecules compared with the greup, evidently:

(Eﬁ G, )MN = -‘S/'t d@a, Yy

JAY:
As the interval Ae of ¢ may be chosen so small that T =0

may be put, the argument of the logarithm in (35) may be put
constant in the summalion extended over a group.
In this way we get:
Suy = — 1 = fLundG.anlog (fuuy dGyx) —klog (MN)! —klog (pMN) =
o

Ny
— k2 f,dG log (2{;—1‘@ [dG, N]M)

— kMN log M—kMN log N + kMN—EMN log p = — kM Zf; dG, log (f,dG,)
+ BMN log M) . (Zf, dG) + ete. =
(as 2fidG,=1)
— kMZ 1, dG, log (1, dG) — kMN log N + kMN — kMN loy p = M8y,
which we have now derived from an expression depending only on

the product ANV, which expression we had, of course, to treat
differently, as far as M and NV ave concerned.

Prof. Loxextz, whose communication **Opmerkingen over de theorie
dor eenatomige gassen’”?) induced me to take up the treated problems,
points oul fo me, among different valnable remarks, for which I
am greatly indebted to him, that I have now indeed demonstrated
that my formulae may be considered as convenient precepts for the
calculations for the thermodynamic probability of the gas. but that
I have not yet explained how through the consideration of the gas
alone they could be derived, in particular why after all it isin this
case necessary to divide by N/. This is a difficult question. In some
connection with it is what follows:

We have seen that a di-atomic gas, the molecules of which consist
of perfectly equal atoms, at higher temperatures must have a Z log (2)
smaller entropy than when the atoms are different. Must not the
specific heat of the gas then have a different course in the two
cases at low temperatnres, and how conld this be accounted for?>

1) II. A. Lormnwz, Zitlingsversl. Akad. Amsterdam, 28, 515 (1914). Not yet
translated.

' 78
Proceedings Royal Acad. Amsterdam. Vol. XVIL
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Or will the entropy of the gas. which is monatomic from a thermo-
dynamic ,point of view at very low temperatures, perhaps not be
represented by (16), but have a value LN log 2 smaller? This seems
improbable, at least at first sight. A perfeetly satisfactory answer to
this question is probably to be expecled only from a general theory
of quanta. -

However, something can be said about the division by N/ also
without having recoursec to the solid phase. Suppose we have the
gencral theory of quanta We come to the conclusion that for the
determination of the thermodynamic probability we have not to
reckon with infinitely small regions, but with such of a definite
finite extent. This, however, holds only without reservation for
systems the molecules of which are all different. Of a gas for which
this is the case, we could not say that the eniropy was proportional
to the mass; 1t would much sooner contain a term Z/log N/ Now,

N/

nlnt...
greater than when the gases are equal, which can be thermodyi
namically derived for large values n, eic., while it seems natural
to consider it also as valid for small n’s, (n, etc. are of course the
numbers of molecules for the different kinds, &V is = Zn,). If now
all n’s are =1, 10 other words, if the gas consists of nothing but
different molecules, the entropy - will be I log (N /) greater than for
a gas consisting of nothing but equal molecules. For the latter we
shall then have to subtract L/log (NV/) from the original entropy
expression. Such considerations have originally led me to the division

by N! and to the formula (16).

however, the entropy of a mixture of cafferent gases is 4 log

Physies. — “On interference phenomena to be expected when Rontgen
rays pass through a di-atomic gas.” By Prof. P. EHRENFEST.
(Communicated by Prof. H. A. Lorentz.)

L
(Communicated in the meeting of February 27, 1915).

As is known W. Frivprica™) has ascertained that a beam of
Rontgen rays passing through yellow wax and other amorphous solid
substances gives interference rings on a photographic plate placed
hehind it. Ligquid paraffin also gives a ring, which, however, does
not represent a maximum of darkness, but an inflection point of

1) W. Frieorict, Eine neue Inleiferenzerscheinung bei Rontgenstralen: Phys.
Zsclu. 14, (1913), p. 317. :
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