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perhaps hope that the error introduced by thus assumption will not
be considerable ).

We mentioned already the analogy between the problem treated
in §§ 11—13 and that of the thermal expansion. In the one case
the torsion plays the same part as the heat motion in the other
and the quantities that have been indicated by ¢ in the two
problems are comparable with each other; the similarity of the mathe-
matical treatment in the two cases is likewise evident. PoyNTING
remarks that a dilatation of the wire will also take place when it
executes torsional vibrations or when vibrations of this kind are
propagated in it. With similar phenomena we are generally concerned,
when an elastic body is traversed by waves, and when we consider
the very short waves especially, this leads us directly to an insight
into the nature of thermal dilatation.

Finally it deserves our attention that, though the phenomena
discussed in this paper are chiefly determined by the change of the
elastic constants caused by a previous deformation, yet there are
as well in equation (17) as in (29) and (30) terms that are independent
of this change.

Physice. - “On EwstewN’s Theory of gravitation.” 1. By Prof.
H. A. Lorekntz.

(Communicated in the meeting of February 26, 1916).

§ 1. In pursuance of his important researches on gravitation
KinsTeIN has recently attained the aim which he had constantly kept
in view; he has succeeded in establishing equations whose form is not
changed by an arbitrarily chosen change of the system of coordinates *).
Shortly afterwards, working out an idea that had been expressed
already in one of EiNsTEIN's papers, HiLBerT") has shown the use
that may be made of a variation law that may be regarded as
"HamiLToN’s principle in a suitably generalized form. By these results
the “general theory of relativity” may be said to have taken a
definitive form, though much remains still to be done in further

1) This paper had already gone to press, when an article of FORSTERLING
came under my notice (Ann. d. Phys. 47 (1915) p 1127) in which considerations
similar to those here developed are put forward.

%) A. EwstenN, Zur allgemeinen Relativititstheorie, Berliner Sitzungsberichte
1915, pp. 778 799; Die Feldgleichungen der Gravitation, ibid. 1915, p. 844.

$) D. Husent, Die Grundlagen der Physik |, Gottmger Nachrichten, Math.-phys.
Klasse, Nov. 1915,
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developing it and in applying it to special problems. It will also be
desirable to present the fundamental ideas in a form as simple as
possible.

In this cowmunication it will be shown that a four-dimensional
geometric representation may be of much use for this latter purpose;
by means of it we shall be able to indicate for a system containing
a number of material points and an electromagnetic field (or even-
tually only one of these) the quantity H, which occurs in the variation
theorem, and which we may call the principal function. This quantity
consists of three parts, of which the first relates to the material
points, the second to the electromagnetic field and the third to the
gravitation field itself. '

As to the material points, it will be assumed that the only con-
nexion between them is that which results from their mutual gravi-
tational attraction. ‘

§ 2. We shall be concerned with a four-dimensional extension R,,
in which ‘‘space” and “time’’ are combined, so that each point P
in it indicates a definite place 4 and at the same time a definite
moment of time ¢ If we say that I’ refers to a material point we
mean that at the time ¢ this point is found at the place 1. In the course
of time the material point is represented every moment by a new
point P?; all these points lie on the “world-line”, which represents
the state of motion (or eventually the state of rest) of the material
point'). In the same sense we may speak of the world-line of a
propagated light-vibration. An intersection of two world-lines means
that the two objects to which they belong meet at a certain moment,
that a “coincidence” t(akes place®). Now EinsTeix has made the
striking rvemark®) that the only thing we can learn from our
observations and with which our theories are essentially concerned,
is the existence of these coincidences. Let us suppose e.g. that we
have observed an occultation of a star hy the moon or rather the
reappearance of a star at the moon’s border. Then the world-line of
a certain light-vibration starting from a point on the world-line of
the star has in its further course intersected the world-line of a

) It will be known that in the theory of relativity Minkowskr was the first who
used this geomelric representation in an extension of four dimensions. The name
“world-line’” has been borrowed from him,

®) For the sake of simplicity we shall imagine the two motions not to be
disturbed by this coincidence, so that e.g. two material points penetrale each other
or pass each other al an extremely small distance without any mutual influence.

3) In a correspondence I bad with him.
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point of the border of the moon and finally that of the observer’s
eye. A similar remark may be made when the moment of reappear-
ance is read on a clock. Let us suppose that the light-vibration
itself lights the dial-plate, reaching it when the hand is at the
point «; then we may say that three world-lines, viz. that of the
light-vibration, that of the hand and that of the point a intersect.

§ 3. We may imagine that, in order to investigate a gravitation
field as e.g. that of the sun, a great number of material points,
moving in all directions and with different velocities, are thrown
into it, that light-beams are also made to traverse the field and that
all coincidences are noted '). It would be possible to represent the
results of these observations by world-lines in a four-dimensional
figure — let us say in a “field-figure” — the lines being drawn in
such a way that each obhserved coincidence is represented by an
intersection of two lines and that the points of intersection of one
line with a number of the others succeed each other in the right order.

Now, as we have to atfend only to the intersections, we have a
oreat degree of liberty in the construction of the *field-figure”. 1If,
‘independently of each other, two persons were to describe the same
observations, their figures would probably look quite different and if
these figures were deformed in an arbitrary way, without break of
continuity, they would not cease to serve the purpose.

After having constructed a field-figure /' we may introduce “coor-
dinates”’, by which we mean that to each point P we ascribe four
numbers 2,, &, &, Z,, in such a way that along any line in the
field-figure ihese numbers change continuously and that never
two different points gei the same four numbers. Having done this
we may for each point P seek a point P’ in a four-dimensional
extension R’,, in which the numbers 2, ,.. .2, ascribed to P are
the Cartesian coordinates of the point £”. In this way we obtain in
R’, a figure /7, which just as well as / can serve as field-figure and
which of course may be quite different according to the choice of
the. numbers 2, ..., that have been aseribed to the points of #.

If now it is true that the coincidences only are of importance it
must be possible to express the fundamental laws of the phenomena
by geometric considerations referring to the field-figure, in such a
way that this mode of expression is the same for all possible field-
figures; from our point of view all these figures can be considered
as being the same. In such a geometric -treatment the introduction of

1} In other terms, that the data procured by astronomical observations can be
extended arbitrarily and unboundedly.
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coordinates will be of secondary importance; with a single exception
(§ 13) it only serves for short calculations which we have to inter-
calate (for the proof of certain geometric propositions) and for
establishing the final equations, which have to be used for the
solution of special problems. In the discussion of the general prin-
ciples coordinates play no part; and it is thus seen that the formu-
lation of these principles can take place in the same way whatever
be our choice of coordinaies. So we are sure beforehand of the
general covariancy of the equations that was postulated by Eixsrrin,

§ 4. EmNsTrIN ascribes to a line-element Q) in the field-figure a

length /s defined by the equation
de* = X (ab) yp dze dmy . . . . . . . (]
(fhrb:gba)

Here de, ... dw, ave the changes of the coordinates when we pass
from P to (, while the coeflicients g,, depend in one way or another
on the coordinates. The gravitation field is known when these 10
quantities are given as functions of ., ...a,. Here it must be remarked
that in all real cases the coordinates can be chosen in snch a way
that for one point arbitrarily chosen (1) becomes

ds* = —d " — da ) — dw,* 4 dx?

This requires that the determinant ¢ of the coeflicients of (1) be
always negative. The minor of this determinant corresponding to
the coefficient ¢, will be denoted by .

Around each point P of the field-figure as a centre we may now
construet an infinitesimal surface '), which, when P is chosen as
origin of coordinates, is determined by the equation

2 (ab) gap Toxy, =€, . . . . . . (2)
where ¢ is an infinitely small positive constant which we bhall fix once
for all. This swrface, which we shall call the wdicatrie, is a hyper-
boloid with one real axis and three imaginary ones. We shall also
introduce the surface determined by the equation

2 (ab) gup wary = —€* . . .. (3)
which differs from (2) only by the sign of &. We shall call this
the conjugate indicatriz. It is to be understood that the indicatrices
and conjugate indicatrices take part in the changes to which the
field-figure may be subjected. As these surfaces are infinitely small,

1y A “surface” determined by ome equation between the coordinates is a three-
dimensional extension, It will cause no confusion if somelimes we apply the name

“plane” to certain {wo-dimensional extensions, if we speak e.g. of the “plane”
determined by two line-elements.
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they always remain hyperboloids of the said kind. The gravitation
field will now be determined by these indicatrices, which we can
imagine to have been constructed in the field-figure without the in-
troduction of coordinates. When we have occasion fo use these
laiter, we shall so choose them that the “axes” =z ,a,,x, intersect
the conjugate indicatrix constructed around their starting point,
while the indicatrix itself is intersected by the axis.e,. Thisinvolves
that the coefficients ¢,,.4,,, ¢,, are negative and that g,, is positive.

F§ 1

§ 5. The indicatrices will give us the units in which we shall
express the length of lines in the field-figure and the magnitude of
two-, three or four-dimensional extensions. When we use these
units we shall say that the quantities in question are expressed in
natural measure.

In the case of a line-element PQ the unit might simply be the
radius-vector in the direction P} of the indicatrix or the conjugate
indicatrix described about /°. It is however desirable to distinguish
the two cases that P(Q intersects the indicatrix itself or the conjugate
indicatrix. In the latter case we shall ascribe an imaginary length
to the line-element?). Besides, by taking as unit not the radius-
vector itself but a length proportional to it, the numerical value of
a line-element may be made to be independent of the choice of
the quantity .

These considerations lead us to define the length that will be
ascribed to line-elements by the assumption that each radius-vector
of the indicatrix has in natural measure the length & while each
radius-vector of the conjugate indicatrix has the length ¢s. ?)

It will now be clear that the length of an arbitrary line in the
field-figure can be found by integration, each of its elements being
measured by means of the indicatrix or the conjugate indicatrix
belonging to the position of the element. In virtue of our definitions
a deformation of the field-figure will not change the length~of lines
expressed in natural measure and a geodetic line will remain a
geodetic line.

§ 6. We are now in a position to indicate the first part H, of
the principal function (§ 1). T.et ¢ be a closed surface in the
field-figure and let- us confine ourselves to the principal fune-

!) This corresponds to the negative value which (1) gives for ds

%) For a radius-vector on the asymptotic cone we may take either of these
values; this makes no difference, as the numerical value of a line-element in the
direction of such a radius-vector becomes 0 in both cases.
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tion so far as it belongs to the space £ enclosed by that surface. Then
the quantity H, is the sum, taken with the negative sign, of the
lengths of all world-lines of material points so far as they lie
within £2, each length multiplied by a constant m, characteristic of
the point in question and to be called its mass.?)

It must be remarked that the elements of the world-lines of
material points intersect the corresponding indicatrices themselves.
The lengths of these lines are therefore real positive quantities.

A deformation of the field-figure leaves /, unchanged.

-§ 7. We shall now pass on to the part of the principal funection
belonging to the gravitation field. The mathematical expression for
this part was communicated to me by ENsTRIN in our correspondence.
It is also to be found in HiLBerT’s paper in which it is remarked
that the quantity in question may be regarded as the measure of
the curvature of the four-dimensional extension to which (1) relates.
Here we have to speak only of the interpretation of this quantity.
To find this the following geomelrical considerations may be used.

Tet PQ and PR be two line-elements starting from a point P
of the field-tigure, QR the line-element joining the extremities  and
2. If then the lengths of these elements in natural measure are

PQ=ds', PR=ds", QR=—ds,
we define the angle (v, s") between I’ and PR by the well known
trigonometric formula
ds* = ds"* + ds'"" — 2ds'ds"” cos (&', §")
ds + do'"* — ds*

< :’ 1" —_— - - 4
cos (8, 8") Sdede” 4)
from which one can derive
d. ' dwll
cos (s', &) = =X (ab) gu fallt . (®)

A

By means of this formula we are able to determine the angle
between any two intersecting lines. Of course the {wo other angles
of the triangle PQR can be calculated in the same way.

Now two cases must be distinguished.

a. The plane of the triangle PQR cuts the conjugate indicatrix,
but not the indicatrix itself. Then the three sides have positive
imaginary values. Moreover each of them proves to be smaller than

1} This agrees with the value of the Lacranaian function, which is to be found
e.g. in my paper on “HamiLton's principle in Emstem’s theory of gravitation.”
These Proceedings 19 (1916), p. 751,
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the sum of the others, from which one finds that the angles have
real values and that their sum is =

h. The plane PQR ecuts both the indicatrix and the conjugate
indicatrix. In this case different positions of the triangle are still
possible. We can however confine ourselves to triangles the three
sides of which are real. These are really possible, for in the plane
of a hyperbola we can draw triangles the sides of which are parallel
to radins-vectors drawn from the eentre to points of the curve (and
not of the conjugate hyperbola).

By a closer consideration of the triangles now in question it is
found however that by the choice of onr “natural” units one side
is necessarily longer than the sum of the other two. Formula (4)
then shows that the cosines of the angles are real quantities, greater
than 1 in absolute value, two of them being positive, and the third
negative. We must therefore ascribe to the angles imaginary or
complex values. If for p > 41 we put

arccos p==1ilog(p + V'p* — 1)
and
are cos (— p) = 7 — arccos p ,
we find for the three angles expressions of the form
it and v —7(a 4 B),
so that the sum is again a.

From the cosine calculated by (4) or (5) the sine can be deriyed

by means of the formula

sing =V 1 —cos’q,
where for the case cos* ¢ >>1 we can vonfine ourselves to the value
stngp =1 VW
with the positive sign.
It deserves special notice that two conjugate radius-vectors of
the indicatrix and the conjugate indicatrix are perpendicuiar to each
other and that a deformation of the field-figure does not change the

angle between two intersecting lines determined according to our
definitions.

§ 8. Before proceeding further we must now indicate the natural
units (§ 5).- for two-, three-, or four-dimensional extensions in the
field-figure. Like the unit of length, these are defined for each
point separately, so that the numerical value of a finite extension is
found by dividing it into infinitely small parts.

A two-dimensional extension cuts the conjugate indicatrix in an
ellipse, or the indicatrix itself and the conjugate indicatrix in two

: 86

Proceedings Royal Acad. Amsterdam. Vol, XI1X
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conjugate hyperbolae. In both cases we derive our unit from the
area of a parallelogram described on conjugate radius-vectors.

A three-dimensional extension cuts the conjugate indicatrix in an
ellipsoid, or the indicatrix and its conjugate in two conjugate hyper-
boloids. Now our unit will be derived from the volume of a
parallelepiped described on three conjugate radius-vectors.

In a similar way the magnitude of four-dimensional extensions
will be determined bLy comparison with a parallelepiped the edges
of which are four conjugate radius-vectors of the indicatrix and the
conjugate indicatrix. v

It must here be kept in mind that, according to well known
theorems, the area of the parallelogram and the volume of the
parallelepipeds in question are independent of the special choice of
the conjugate radius-vectors.

We shall forther specify the unitsinsuch a way (comp. § 5) that the
numerical magnitude of a parallelogram or a parallelepiped described
on conjugate radius-vectors is found by multiplying the numbers by
which the edges are expressed in natural measure.

From what has been said it follows that the area of the paral-
lelogram described on two line-elements is given by the product of
the lengths of these elements and the sine of the enclosed angle.
Similarly the area of an infinitely small triangle is determined by
half the product of two sides and the sine of the angle between them.

We need hardly add that the numerical value of any two-, three-
or four-dimensional domain expressed in natural measure is not
changed by a deformation of the field-figure.

§ 9. Let, at any point £ of the field-figure, 1, 2, 3, 4 be four
arbitrarily chosen conjugate radius-vectors of the indicatrix. Two
of these determine an infinitely small part }7 of a two-dimensional
extension. We may prolong this part to finite distances from P
by drawing from this point geodetic lines whose initial directions
lie in the plane V7. In this way we obtain six two-dimensional
extensions (1,2), (2,3), (3,1), (1,4), (2,4) and (3,4). Let us now con-
sider in one of these e. g. (1, ) an infinitesimal triangle near the point P,
the sides of which are geodetic lines (viz. geodetic lines in (a, b)). If in
calculating the angles of this triangle we go to quantities of the second
order with respect to the sides and to the distances from P, the sum
s of the angles proves to have no longer the value & (comp. § 7).
The ‘“‘excess” e¢=s — m is proportional to the area A of the triangle,
independently of the length of the sides, of their ratios and of the
position of the triangle in the extension (a, ). For the three exten-

-
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sions (1.2) (2,3), (3,1, which do not intersect the indicatrix itself
but the conjugate indicatrix, this proposition follows from a well-
known theorem of (Gavss in the theory of curvature of surfaces;
for the other three (1,4), (2.4), {3,4), which cut the indicatrix itself,
the proof can be given by direct calenlation. The considerations
necessary for this, and some other calculations with which we shall
be concerned further on will be communicated in a later paper.

In considering the three last-mentioned extensions 1 have confined
myself to triangles with real sides (§ 7, #).

The quotient

4

Z — fgqb
is now for each extension a definite number, which we may consider
as a measure of the curvature of the two-dimensional extension
(a, b); the sum K of the six numbers K,; may be called the cur-
vature of the jield-figure at the pont I” in question. This quantity
is the same that has been introduced by HiLBert; this results from
the ealculation of its value, which at the same time shows X to
be independent of the special choice of the directions 1, 2, 3, 4
introduced in the beginning of this §.

The numbers A, are all real and have a meaning that can be
indicated without the introduction of coordinates; moreover their
sum A is not changed by a deformation of the field-figure.

If now dL is an element of the four-dimensional extension
of the field-figure, expressed in natural measure, the part of the
principal function belonging to the gravitation field is

H,:;de.Q, e e L (6)
where the integration is extended to the domain considered (§ 6)
while 2 is the gravitation constant. f, too is not changed by a
deformation of the field-tigure.

The factor ¢ has been introduced in order to obtain a real value
for H,, the element /£ being represenied in natural measure by a
negative imaginary number (§ 8).

§ 10. What we have to say of the electromagnetic field must be
preceded by some considerations belonging to what may be called
the “vector theory” of the field-figure.

A line-element PQ, taken in a definite direction {indicaied by the
order of the letters), may be called a wvector. Such vectors can be
compounded or decomposed by means of parallelograms or paral-

lelepipeds. HEspecially, when coordinates =,,...®, have been chosen,
) 86*

-10 -
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a vector may be resolved into four components which have the
directions of the coordinates, viz. such directions that a shift along
the first e.g. changes only .r,, while @,, #,, @, remain constant. The
four components in question are determined by the differentials
de, , .. de, corresponding to P}, We shall say that by these they
are expressed in ‘‘r-measure”. Their values in natural measure are
found by multiplying de,,. . de, by certain factors. If we keep in
mind that the radius-vectors of the conjugate indicatrix and the
indicatrix in the divections of the axes are expressed in “« measure” by

& & & &

[ — “

V(——-_q” V‘”_.b'“ V;g,-;

Al
V.”u

and in natural units by
e, 18, 1f, &
we find for the reducing factors

L=iV —g, L=iVg, ,=iV—g,1,=Vg, . (7)

In the language of vector-analysis the vector obtained by the
composition of two or more vectors is also called the sum of these
vectors.

We shall also speak of jinute vectors, i.e. of directed quantities
which can be represented on an infinitely reduced scale by line-
elements in the field-figure. If @ is the constant “reduction factor”
chosen for this purpose, a vector A will be represented by a line-
element wA, the direction of which is also ascribed to A. It will
now be evident that two finite vectors, as well as two infinitely small
ones, determine an infinitesimal two-dimensional extension and that
tinite vectors can be compounded and resolved by means of parallelo-
grams and parallelepipeds. Also that we may speak of the “magnitude”
of such figuves, that e.g. the rule given in § 8 applies to the parallelo-
gram described on two veectors.

The components of a vector in the directions of the coordinates
expressed in .r-measure will be called X,, X,, X,, X,. This means
that wX,,... X, are equal to the differentials dv,,...dz, cor-
responding to the infinitely small vector wA.

If we want to know the components of A in natural units we
must multiply X,,... X, by the factors (7).

§ 11. Two vectors A and B starting from a point P of the field-
figure and lying in a plane V, determine what we shall call a
rotation R in that plane. We ascribe to it the direction indicated by
the order AB and a value given by the parallelogram described on

-11 -
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A and B and expressed in natural measure'). This involves that the
same rofation may be represented in many different ways by two
vectors in the plane V. .

For the rotation R we shall also use the symbol [A. B].

By the wector product [A.B.C] of three vectors A,B,C at a
point of the field-figure and not lying in one plane we shall under-
stand a vector D the direction of which is conjugate with each of
the three vectors (and therefore with the three-dimensional extension
A, B, C), the direction of D corresponding to those of A,B and C
in a way presentlly to be indicated, while the magnitude of D,
expressed in natural measure, is equal to that of the parallelepiped
described on A, B and C and expressed in the same measure. This
definition involves that the value O is ascribed to the vector product
of three vectors -lying in one and the same plane.

A further statement about the direction of D is necessary because
two opposite directions are conjugate with A, B, C. For one set of
three directions A,. B,, C, we shall choose arbitrarily which of its
two conjugate directions will be said to correspond to it. If this is
the direction D,, then. the direction D corresponding to A, B, C will
be determined by the rule that D, passes into D hy a gradual passage
of the first three vectors from A, B, C, into A, B, C, this latter
passage being effected in such a way that during the change the
vectors never come to lie in one plane.

The vector product [A.B.C] takes the opposite direction when
one of the vectors is reversed as well as when two of them are
interchanged. We must therefore always attend to the order of the
symbols in [A.B.C]J. _

The vector product possesses the distributive property with respect
to each of the three vectors, so that e.g. if A and A, are vectors,
[(A,+A,).B.C|=[A,.B.C] +[A,.B.C].

From this we can infer that [A. B.C]| depends only on C and
the rotation R determined by A and B. For this reason we write
for the vector product also [R.C]; in calculating it we are free to
replace the rotation R by any (wo vectors by means of which it
can be represented. _

If R, R, and R, are rotations in the same plane, such that (he
value and direction of R are found by adding R, and R, algebrai-
cally, we have, in virtue of the distributive property

. [R,.Cl+[R,.C]=[R.C]

1} H, according to circumstances, different signs are given to R, the angle
whose sine occurs in the formula for the area of a parallelogram must be
understood to be positive in one case and negative in the other

-12 -
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§ 12. In what precedes we were concerned with the volumes of
parallelepipeds expressed in natural units. When we have intro-
duced coordinates x,,.. », we may also express these volumes in
the “r-units” corresponding to the coordinates chosen.

Let us consider e.g. the three-dimensional extension x, = const,,
which cuts the conjugate indicatrix in the ellipsoid

3 3 . 3 9 . " U gy e ;]
911 ®, F 04,07 A 00307+ 29,,8,@, + 20,,8,8, + 20,20, = — &,

If we agree that in z-measure spaces in this extension will be
represented by positive numbers and that a parallelepiped with the
positive edges r,, dr,, dr, will have the volume dz, dz, dz,, we
find for that of the parallelepiped on three conjugate radius-vectors

83
V-6
where it has been taken into consideration that (+,, is negative.

The volume of the same parallelepiped being expressed in natural
measure by — &* (§ 8), we have to multiply by

[

k]

44

L e N ()
if we want to pass from the expression in @-measure to that in
natural measure. .

For the extension (z,,.,,.,), i.e. &y =0 the corresponding factor is

Ly=—VG, . « . . ...
§ 13. 1In the theory of electromagnetic phenomena we are con-
cerned in the first place with the electric charge and the convection
current. So far as these quantities belong to a definite element /$2

of the field-figure they may be combined into

qdf2

where g is a vector which we may call the current vector. When
it is resolved into four components having the directions of the axes,
the first three components determine the convection current, while
the fourth component gives the density of the electric charge.

As to the electric and the magnetic force, these two taken together
can be represented at each point of the field-figure by two rotations
R, and Ry
in definite, mutually conjugate two-dimensional extensions. These
quantitics are closely connected with the current vector, for after
having introduced coordinates x,,...x, we have for each closed

surface ¢ the vector equation

-13 -
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ﬁ[Re.N]+[R,,.N]g,do:5 (ql.d2, . . . (10)

where the second integral has to be taken over the domain £
enclosed by ¢. On the left hand side o represents a three-dimensi-
onal surface-element expressed in natural units and N a vector
of the magnitude 1 in natural measure conjugate with or per-
pendicular to that element (§ 7) and directed towards the outside of
the domain £. The index x shows that the vector [R.N]+4[R:N]
must be expressed in a-measure. At each point of the surface we
must resolve the vector along the four directions of the coordinates,
express each component in z-measure (§ 10) and finally, after multi-
plication by do, we must add algebraically all «a,-components;
similarly all ,-components and so on.

It must be expressly remarked that if an equation like (10) in
which we are concerned with the composition of vectors at different
points of the field-figure, shall have a definite meaning we must
know which components are to be considered as having the same
direction, so that they can be added. This has been determined by
the introduction of coordinates.

On the right hand side of the equation the index a wmeans that
the vector q must be expressed in z-measure and the factor ¢ had
to be introduced becanse £2 is lmaginary.

One can prove that equation (10) is equivalent to the differential
equations which in EinstuiN’s theory serve for the same purpose
and further that when the equation holds for one choice of coordi-
nates it will also be true for any other choice.

§ 14. The proof for these assertions must be deferred to the
second part of this communication. For the present we shall only
add that the part of the principal function referring to the electro-
magnetic field is given by

H, =i f 3 (R + Ry?) 2,

where R, and Ry are, expressed in natural units, the two rotations
that are characteristic of the field. Like the two other parts of the
principal function, H, is not changed by a deformation of the field-
figure. In this statement it is to be understood that the parallelo-
grams by which Re and R; are represented take part in the deforma-
tion.

Some remarks on the way in which, starting from the principal
function, we may obtain the fundamental equations of the theory
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must also be deferred. 1 shall conclude now by remarking that, as
an immediate consequence of HamintoN’s principle, the world-line of
a material point which is acted on only by agiven gravitation field,
will be a geodetic line, and that the equations which determine the
gravifation field caused by material and electromagnetic systems will
be found by the consideration of infinitely small variations of the
indicatrices, by which the numerical values of all quantities that
are measured by means of these surfaces will be changed.

Physics. — “On EKixstex's  Theory of gravitation.” 11. By
Prof. H.. A. Lorentz.

(Communicaled in the meeting of March 25, 1916).

§ 15. In the first part of this communication the connexion
between the electric and the magnetic force on one hand and the
charge and the convection current on the other was expressed by
the equation

j;mg.NHAth.dea:sﬁqudu,. .. )

which has been discussed in § 13. It will now be shown that this
formula is equivalent to the differential equations by which the con-
nexion in - question is expressed in the theory of Eixsreix. For this
purpose some further geometrical considerations must first be deve-
loped. They refer to the special case that the quantities ¢,, have
the same values at every point of the field-figure.

If this condition is fulfilled, considerations which generally may
be applied to infinitesimal extensions only are valid for finite
extensions too.

$ 16. The factor required, in the measurement of four-dimen-

sional domains, for the passage from a-units to natural units has

now the same value at every point of the field-figure. Similarly,
when any one-, two- or three-dimensional extension in the field-
figure that is determined by linear equations (*“linear extensions”)
is considered, the factor by means of which the said passage may
be effected for parts of that extension, will be the same for all
those parts. Moreover the factor in question will be the same
for two ‘paralle]” extensions of this kind, i.e. for two extensions
the determining equations of which can be written in such a way
that the coefficients of z,, ...z, are the same in them,

-15-



