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1. Introduction. 1) 

In the following pages formulae will be derived concerning correlations 
in a particular type of solutions cif the equation 

(1) 
ov OV 02V 
ot -+- v oy = l' oy2 

'Ve suppose the coefficient l' to be smal!. Before describing the solutions 
to be considered, a few general properties of eq. (1) will be mentioned. 

If v is interpreted as a velocity, an "equation of momentum" can be 
formed by integrating (1) with respect to y. For a domain at the limits 
of which v vanishes and "öv/"öy is of such magnitude that l' ("öv/"öy) can 
be neglected, we 0 btain : 

(2) ~ f vdy= 0 

Au "equation of energy" can be fornled by multiplying eq. (1) with v 
and integrating it with respect to y. For any domain at the endE' of which 
v vanishes, we obtain 

(3) i f ~ d?'J = - l' J" (OV)2 dy dt 2 • oy 

When 1..'2/2 is considerecl as kinetic energy per unit. length, eq. (3) shows 
a loss of energy through "intern al friction", the amount of which per 
unit of length is determined by l' ("öV/()y)2. 

1) This paper is a contilluation of that on " The formation of vortex sheets in 
a simplified type of turbulent motion", these Proceedings 53, 122 (1950) 
(:.\Iededeling no. 64). Eqllation (I) has already been considered to some extent in 
the papers: "Application of a model system to illustrate some points of the 
statistical theory of free turbulence", these Proceedings 43, 8 (1940); and "A 
mathematical model illust.rating the theory of turbulence", Advances in Applied 
l\fechanics 1, 182 (1948). In those papers a coefficient 2 had been introdllced 
before the term v (dv/dy) of the equatioll; this factor has now been dropped in 
connection with the considerations of the paper on the formatioll of vortex sheets, 
which causes a slight difference in some of the formulae. 
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Equation (1) is invariant with respect to a shift over an arbitrary distance 
along the y-axis. We consider a domain of unlimited extent and assume 
that the initial course of v as function of y is such that mean values can 
be defined, e.g .. 

- 1 I1I

' v= -" vdy 
YZ-Yl 

11. 

v 2 = _1_ f v2 dy, etc., 
YZ-Yl 

which for sufficiently large values of the interval Y2-Yl do not change 
when this interval is shifted along the y-axis. This property will remain 
valid throughout the development in the course of time and thus applies to 
v(y) at any instant. We shall say that the state of our system [meaning 
the course of v(y) at a given value of t] is statistically homogeneous. 

The equation of energy (3) will then also apply to the mean values 
of both members. We write: 

E = t v2 (mean kinetic energy per unit length) 

ê = V (oV/oy)2 (mean dissipation per unit length), 

and obtain: 

( 4) ê= - dE/dt 

Equation (1) is moreover invariant with respect to a simultaneous 
change of sign of both v and y. When mean values caiculated for the 
initial state of the system possess this property, it again will be preserved 

during the development of the system. The property implies that v = o. 

2. Correlation lunctions. - Following the example of all modern 
authors on hydrodynamic turbulence, we intro duce the quantities: 

{ 5) 

(6) 

VI v2 = V (y) V (y+ ",) = v2 1 (",) 

vi V2 = V (y)2 V (y +",) = (V2)3/2 k (",) 

(mean values to be taken with respect to y, with a fixed value of "', at a 
given instant of time). As is known, 1(",) is an even function, while k(",) 
is an odd function, the development of which in the neighbourhood of 
'" = 0 begins with a term in ",3. 

If the development of 1(",) in the neighbourhood of", = 0 is written: 

(7) 

where À is a quantity having the dimensions of a length, we obtain: 

(8) 

Hence (4) can be wri tten : 

{9) ê=-dE/dt= 2vEjÀ2 
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When the course of v(y) presents a sufficiently random character, 1(1]) 
and k(1]) will become zero for 1] increasing without limit. We assume 
that both are integrable and put: 

(10) 

In this way Land À are two linear dimensions connected with the 
course of v(y). Both are functions of t. We introduce two dimensionless 
parameters, of the nature of REYNOLDS' numbers: 

(11) 

We suppose that '/I is so smaU that Rel is a large quantity. 
If again we write VI' V2 for v(y), v(y + 1]) respectively, we can form the 

equation: 

() () ()Vl ()V2) + ( ()2Vl + ()2 V2) 
()t VI V 2 = - VI V2 ()y + ()y '/I V 2 ()y2 VI ()y2 • 

Taking mean values from both sides with respect to y, we obtain, by a 
weU known procedure, the fundamental equation: 

(12) 

If this equation is applied to 1] = 0, we come back to (4). On the other 
hand, since we have assumed that Rel is large, it is possible that for 
values of 1] comparable with L or exceeding L, the second term on the 
right hand side of (12) can be discarded and: 

( 12a,) 
()-- ()-.,­
~ (v l v2) ,....., ~ (Vi v~) 

By integrating eq. (12) with respect to 1] from 0 to 00, we find: 

(13) 

where 

(14) 
00 

J o= r V l v2 d1]= v2 L 
o 

This proves that Jo is the analogue of LOITSIANSKY'S invariant in hydro· 
dynamic turbulence. 

3. Fourier analysis of vl '1-'2 and vi v2• - Following BATCHELOR we put: 

__ 00 

(15) vl v2 = f dn T(n) cos n1] 
o 

00 

(16) vrV2 = f dn !P(n) sin n1] 
o 

17 



250 

so that: 
+00_ 

( 17a) nr(n)= f V1V2 cosn1]d1] 
-00 

+00_ 
(17b) nlJl(n) = f viv2 sinn1]d1] 

-00 

The function r will be even in n and for small n we can write: 

(18a) 

From (14) we obtain ro = 2 Jo/n. 
The funct,ion lJI will be odd in n, so that for small n: 

( 18b) 

The FOURIER transform of the fundamental equation (12) be co mes : 

(19) 

This gives: 

(20) 

(jr 
- = n lJI- 2v n2 r 
(jt 

\ dro/dt= 0 

) dr2/dt = - 2lJ11 + 4v ro 
{dF2m /dt= - 2m lJI2m- 1 + 4vm (2m-l) F2m- 2 

4. Particular 80lution of eq. (1). - We write: y*= (y-yo)j(t-to)t 
and a8sume: v = V(y*)/(t - toP. Equation (1) transforms into: 

v V" - V V' + t y* V' + t V = 0, 

ac cents denoting derivatives with respect to y*. Integration gives: 

the integration constant having been adjusted so that V can vanish at 
infinity. We now put: 

V = - 2v d (lnu)/dy* 

and obtain the following equation for u: 

This equation can be integrated. The resulting expression for V can be 
brought into the form: 

( 21) 

where A is an integration constant. 
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The following approximations are valid when A 2jv is large: 

(a) when y* = A + c5, where c5 ~ A: 

V "-' tA -! A tanh (Ac5j4v); 

(b) when 0 < y* < A and y* not too near to one of the endpoints : 

V "-' y*; 

(c) when y* is near zero or is negative: 

V "-' 21/~ exp (-y*2j4v) . 
, :r l-Erf(y*j2 Vv) 

With the aid of these approximations we can obtain a general picture of 
the course of V as a function of y*, and thus of the course of v as a function 
of y and t (see fig. 1). The curve for v approaches to a rectangular triangle 

v 

Fig.!. 

with base length A(t - to)'/' and height Aj(t - to)'/·. The area is equal 
to !A2 and remains constant (conservation of momentum). The kinetic 
energy amounts to: 

1 (A Vt tol (AfVt tO)2 = ~ A3 (t- tO)_'/·, 

while the value of the dissipation integral is found to be: 

v J (ovjoy)2 dy = j12 A3 (t-to)-·/·' 

In the approximation used here, only the steep part at the end of the 
curve contributes to the integral. 

It should be noteel th at there is also a solution: 

v = - V (y*)j(t-to)' /' with y* = - (y-yo)j(t-to)'/'. 

I have consielereel these results (anel similar ones founel in previous 
work) as an indication th at an investigation of the behaviour of approx­
imate solutions, formeel out of almost rectilinear parts interspersed 
with nearly vertical jumps, will be sufficiently interesting to make it 
worth while. These approximate solutions belong to the category of 
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those constructed in the preceding paper when we considered the pro­
perties of certain two-dimensional fields. An important property of these 
solutions is that they present features which can be easily counted; this 
is a distinct advantage when we have to do with statistical problems 2). 

5. The approximate method of solution is based upon the circumstance 
that in a domain where ovjoy and o2vjoy2 are of normal order of magni­
tude, we can simplify eq. (I) to: 

(22) ~+ OV = 0 
ot V oy 

We will suppose that the initial course of v can be represented by a 
series of straight segments, forming a broken line. Consider a particular 
segment, given by: 

v= f3 (y-a), 

where fJ and a are functions of t. When this expres sion IS substituted 
into (22), the equation is satisfied identically in y if: 

(23) fJ = Ij(t+ to), and a = constant 

to being another constant. Hence every straight segment will turn to 
the right, while its point of intersection with the horizont al axis (its 
"hinge point") remains unchanged, the angle a (compare fig. 2) increasing 
according to: tan a = t + constant. 

This result can immediately be applied to a series of segments. - The 
point of intersection of two consecutive segments moves along a hori­
zontal line with a velocity equal to the height of the point above the 

2) It has been pointed out to the author by J. D. COLE and V. BARGMANN at 
Pasadena, Cal., that the substitution 

v = - 2v 0 (ln UI)/OY 

ean be used to transform the original equation (1) into a linear equation of the 
third order, which can immediately be integrated into: 

oUI 02Ut C 
Tt = V oy2 + UI (t), 

C(t) being an arbitrary function of the time. If we eliminate this function with 
the aid of the substitution: UI = u~ . exp {f C(t) dt}, we are left with : 

In this way it becomes possible to write down in explicit form solutions of 
eq. (1) starting from given initial conditions, e.g. from an arbitrarily distributed 
system of concentrated loads. However, the circumstance that v is Bupposed to 
be very smalI, makes these solutions not always convenient in further deductions. 

The case of a single concentrated load leads automatically to the particular 
solution considered in the text. 
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axis. If the point is below the axis, the velo city is negative and the point 
moves to the left. A graphical construction can be easily executed. 

Wh en the initial slope of the segments was positive, it will remain so 
for ever, the slope gradually decreasing to zero. If the initial slope is 

Fig. 2. 

negative, the slope will increase in absolute measure and af ter a finite 
lapse of time the segment will approach to a vertical position. Equation 
(22) can then no longer be used and we must have re course to an appro­
priate solution of the original equation. In the same way as in the pre­
ceding paper it is fOlmd that a better approximation to the course of v 
is given by the expression : 

together with: 

(25) 

v_ being the limiting value of v on the left hand side and v + that on the 
right hand side of the vertical segment. 

Two conclusions will be drawn from th is result. One is, that the approxi­
mate picture in which the course of v is taken as a chain of rectilinear 
segments, can still be used wh en segments originally sloping downwards 
have acquired a vertical direction. From that instant onward they do 
not rotate any more, but move with the velocity d~/dt given by (25), 
keeping their vertical direction. This feature can be introduced into the 
graphical construction alluded to before (see fig. 3). It must be observed 
that vertical segments following each other, can overtake one another. 
When this occurs, they combine to form a single segment, moving from 
then onward with a velocity again given by (25), v_ and v+ now referring 
to the limiting velocities at the end points of the new segment. 

The second conclusion is, that when greater accuracy is needed with 
regard to the "rounding off" at the ends of a vertical segment, we can 
use the hyperbolic tangent function indicated in (24) as a convenient 
approximation. In this way it is found that the dissipation integral 
referring to a single vertical segment has the value 11y (v_ - V+)3. - It 
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should be kept in mind that (v_-v+) is positive for every vertical seg­
ment, as will be evident from the process by which these segments are 
generated. 

Fig. 3. 

6. With a solution starting from a course of v(y) given by a chain of 
straight segments, several periods can be distinguished in its history. 
There is first the period in which segments with a negative slope change 
into vertical segments, so that an increasing number of apparent dis­
continuities in the course of v is developed. When the number of vertical 
segments has sufficiently increased, there will arise an appreciable chance 
for segments to overtake each other and the numher of vertical segments 
will again decrease. At the same time the slope of the positively inclined 
segments steadily becomes smaller, so that the average amplitude of 
the curve will become less and less. This may bring us to a third period, 
in which the REYNOLDS' number ReI> defined in (ll), will no longer be 
large enough for our approximation to remain valid. We should then have 
recourse to a more accurate solution of the original equation (see foot­
note 2). 

In the following lines I will give attention to the second period, in 
which there is a gradual coalescence of vertical segments. In order to 
study this phenomenon in a pure form, not influenced by the formation 
of new vertical segments, it will be assumed that the initial state of the 
system is already given by a series of parallel straight segments, all having 
the same slope · f3 upward to the right, separated from each other by 
vertical segments. During the development of the system in the course 
of time the slope of the inclined segments will decrease according to 
(23); their parallelism will he retained. To simplify the equations, we 
assume f3 = ljt; the "initial state" of the system can be defined as the 
state for t = l. 

A description of the state of the system at a given instant of time 
is obtained (compare fig. 4) by stating 

(I) the values of the ~ i which define the positions of the vertical segments 
at that instant, and 

(2) the values of the ai which define the loca~ions of the "hinge points". 
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These data are subject to the evident conditions: ;i-l < ;i; a;-l < a;. 
We introduce the following derived quantities: 

(26) 
{ 

Ä; = ;i - ;i-l ; Ti = ai - a;-l 

1;i = ;i - t (a; + ai-i) 

Thus Äi is the length of a domain in which v changes linearly with y; 
{hi is the height of the vertical segment on the right hand si de of Ä;; and 

Fig. 4. 

{J1;; is the height above the y-axis of the point midway on this vertical 
segment. The quantities Ä; and Ti are always positive; the 1;i can be posi­
tive as well as negative. 

7. In the present description the laws of mot ion of the system are: 

(I) {J = lito 
(lI) da;/dt = o. 
(lIl) d;i/dt = d1;;/dt = {J1;;. 

(IV) When two consecutive ;'s (say ;;-1 and ;J come to coincidence, 
the corresponding vertical segments combine and the hinge point a;-l 
disappears (see fig. 5). 

v 

Fig. 5. 

(V) The Ti are constants, until two consecutive ;i coincide and a a dis­
appears. When a;-l disappears, T i - 1 and Ti combine to form a single 



256 

entity and the number of segments ° in a domain of the y-axis of length S 
decreases by one. The average length of these segments correspondingly 
increases. 

(VI) The J., are functions of the time: 

This quantity can be negative as weIl as positive. When Ä. i is smaIl, the 
chance for a negative value will be large; thus it is possible that Ä.. 

decreases to zero and disappears from the system. Hence there is a 
progressive decrease of the number of segments Ä., keeping exactly 
pace with the reduction of the number of segments 0 . The average 
length of the Ä. i correspondingly increases. 

(VII) The Ci increase proportionally with the time, so that (JC. = C.lt 
remains constant, until two consecutive ~i come to coincidence. At the 
instant of coincidence of ~i-l and ~i we have Ci-l - l 0 i-l = C. + 1°.; 
Ci-l and Ci disappear as such and are replaced by a single new value of C, 
equal to CO = C;-1 - 1 0i = Ci + 1 0i-l 3). 

8. We can consider various initial states ofthe system, that is, various 
initial arrangements of the successive values of Ä.i and 0 •. Also one C must 
be given initially; the other Ci then follow from the Ä.i and Ti' We assume 
that the system is statistically homogeneous, so that mean values can 
be defined. Along with mean values taken over a certain length of the 
y-axis, it is convenient to introduce another type, obtained by sum­
mation with respect to i over a large number (N) of consecutive values, 
and division by N. Such mean values will be indicated by the sign -I -I. 

We introduce the assumption th at the mean values of the Ä. i and of 
the 0i are equal: 

(27) 

The number N), of segments Ä. in a certain large domain S of the y-axis 

8) The laws of motion and the tendency towards reduction of the number of 
segments can be illustrated with the aid of a molecular analogue, in which 
molecules colliding with each other immediately combine. We give to the molecules 

coordinates : ei 

velocities dei/dt = {JC. 
masses Ti 

momenta {JTiCi• 

At every collision masses and momenta are added; kinetic energy is lost. The 
description of the process obtains slightly greater clarity, if instead of Ti' Ci we 
introduce the notation Ti-I. i' Ci- 1• i' Then in a collision Ti-I. i and Ti. i+l combine 
to Ti-l.'+l' etc. 

A simple graphical construction can be worked out, starting from the initial 
values of the e,-I. i and those of t (0'-1 + CT,). 
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and the number NT of segments T in this domain will then be practically 
the same: 

(27a) N;.= N T = N = Bil 

When this relation is fulfilled in the initial state, it will be maintained 
in consequence of the laws of motion. 

It follows th at mean values obtained by summation with respect to 
i can be reduced to mean values defined with respect to unit length of 
the y-axis, by division through l. 

The property of statistical homogeneity entails that in calculating 
mean values by summation, we may start from an arbitrary value of i. 

~ r----ï 
There is thus no difference between expressions like T i

2 and T i -!-/,;2. 

The property of statistical invariance with respect to a simultaneous 
change of sign of v and y, now takes the form th at any statistical quantity 
formed out of the Ài , Ti and Ci> will remain unchanged when the signs 
of all Ci are changed simultaneously with a change in the direction in 
which i is counted, no change of sign being made with respect to Ài and 
Ti. For instance: 

This rule implies that: 

r-ï 
(28) Tg i = 0 (])= 1,2, ... ) 

\Ve cannot exclude the possibility that there may exist correlations 
between the values of consecutive Ài or of consecutive Ti' or between 
Ài and Ti of the same or only slightly differing indices. Such correlations 
may arise from the laws of motion. It is also to be observed that we 
require the property of statistical homogeneity to be valid with respect 
to expressions involving the Ci. The values of the Ci would become large, 
if over some large section of the y-axis the Ai and Ti should get more and 
more out of step; we assume that on the long run this is always corrected 

in such a way that it has a sense to speak of mean values like C; and 

~, etc. 
r-ï 

We can neither assume that expressions of the type Ci Ci with i -=I=- j 
will necessarily be zero in consequence of (28). However, it is possible to 
as su me that such quantities will vanish when the difference between 
i and j increases without limit, in such a way that 

(29) 
k ~ + 00 r----ï 

L CiC i+ k converges 
k~-oo 

This equation expresses the ultimate random ne ss of ph ase differences 
at large distances. 
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9. Ga1culation of mean va1ues. 

I. Mean va1ue of v. - In order to show the method to be used in cal­
culating mean values, we start with that of v, although it is evident that 
the result must be zero. We observe that over a segment Ài the variabie v 
changes linearly with y; hence for a single segment: 

J vdy= ; J vdv= l/1{(Ci +l.i )2- (Ci-1-l.i-1)2}. 

This expression must be summed with respect to i over all segments 
contained in a domain of length S; the sum must be divided by S = Nl. 

r-1 ~ r--T 
Having regard to the relations: Ci

2 = Ci_ 1
2 ; .i Ci = 0, etc., which follow 

from the rules of invariance mentioned in section 8, it will immediately 
be found that v = o. 

11. Mean va1ue of v2• - The same procedure is applied. Integration 
over the length of the segment Ài gives: 

J v2 dy= ; J v2 dv = t /12 {(Ci+ l.;)3 - (Ci-1-l.;-1)3}. 

Hence taking the mean value: 

(30) 

We shall write: 

(31) 

Then: 

(32) E = t v2 = 1- /12 12 
{ W + -1"2" (1 + w*) } 

111. Va1ue of E. - Tt has been mentioned at the end of section 5 that 
contributions to the dissipation integral exclusively derive from the 
vertical segments, each segment giving an amount which in the present 
notation is equal to 1 1"2" /13.i3. 

Hence: 

(33) 

Tt follows that 

(34) 

10. To find the mean value of the correlation product VIV2 an elaborate 
calculation is necessary, which will be given in sections 13 and 14. However, 
it is a simple matter to find the value of Jo. Tt is convenient to write: 

b 

2 Jo = lim J VI v2 d'Yj with a -+ - 00, b -+ + 00. 

a 

Sin ce the quantity to be obtained depends on two integrations, one 
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with respect to y to find the mean value of V1V2' the other one with respect 
to 'fj, we interchange the order of integration and first calculate: 

v (y) J v (y + 'fj) d'fj 

with a fixed value of y, which we suppose to be situated in the segment 
l.i' The integral with respect to 'fj, taken over the length of a segment 
Ài+k' has the value: 

'Ve must take a sum of such expressions, from k = - 11 until k = + q, 
pand q being large numbers. The domain of integration will not end 
precisely at vertical segments, and there will remain at each end an 
integral referring to a part of a segment only. We shall indicate the con­
tributions from these parts hy 

and 
t {J v(y) {(Ci-P+ t Ti-v)2- vi} 

t {J v (y) {Vil - (Ci+q - t Ti_q)2}. 

Summing up we obtain: 

{J v(y) {% Ti+k Ci+I,;- t vj + t Vil}' 

It should be observed that VI and VII are dependent on y. 
We now integrate with respect to y over the length of the segment l.i' 

This gives 
+11 

t {J2 {(C i + t T;)2 - (C;-1 - ! T;_1)2} L Ti+/.: Ci +/.: - bI + bIl' 
-1' 

where bI' bil are the integrals of t {J v(y) vi, t {J v(y) vil respectively. 
When now the mean value is calculated by summation with respect 

to i, we can safely assume that the mean values of bI and bil cancel, 
since for large pand q th ere is no relation between v(y) and either vlor 
VII' As regards the other terms, the mean value of quantities containing 
uneven powers of the Ci will either vanish or cancel on account of the 
second invariant property, so that there will remain: 

In extension of (29) we assume that this sum converges. Rence we 
obtain: 

(35) 

Since this must be independent of the time, we must have: 

(Ijl) L ~i Ti+k Ci CH ; ~ t2
• 
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It can be proved in a direct way that this sum is not affected by the 
coalescence of segments and increases only in consequence of the relation 
dei/dt = (Jei = ei/t. We shall come to this in section 18. 

It is even true that 

is not affected by the coalescence of segments (compare footnote 3, where 
this quantity occurs as the momentum of a system of combining mole­
cules). This sum, however, is not convergent, while its mean value with 
respect to i is zero. 

(To be continued). 

Note. - The expres sion for Jo can also be written: 

(35a) 

There may be cases where the terms with k *- 0 all vanish. 


