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1. Introduction. We consider sequences I a I of points al. a2' a3' ••• 

on a circle with radius 1/2n. in other words numbers mod 1. The num~ 
bers BI. a2 •••.• an define n intervals with total length 1; denote by 
M~ (a) and m~ (a) the largest and the smallest length. Clearly 

n M~ (a) ?;: 1 ?;: n m~ (a). 

Analogously M~ (a) and m~ (a) denote the maximum and minimum length 

of the sum of r consecutive intervals. so that n M~ (a) ?;: l' ?;: n m~ (a). 
We put 

lim sup n M~ (a) = Ar (a) 

lim inf n m~ (a) = Àr (a) 
n-.oo 

lim sup M~ (a) / m~ (a) = ftr (a) 
n-.oo 

and 
Ar = g.l.b. Ar (a) • Àr = l.u.b. Àr (a) 

We are able to determine 

ftr = g.l.b. ftr (a). 

AI = I/log 2 Àl = I/log -4 • ftl = 2. 

The problem of Ar. Àr. ftr is closely related to a problem concerning 
"just distributions" solved by Mrs VAN AARDENNE~EHRENFEST I). All we 
can prove is that ftr;:: 1 + l/l' (and analogus inequalities for Ar and Àr); 

we conjecture that r(ftr-1) is unbounded. From this the theorem of 
Mrs VAN AARDENNE~EHRENFEST would follow. 

2. A sequence which gives the best possible values of AI (a) • . 
ÀI (a). ftl (a). Take ak = 210g (2 k-l). reduced mod 1. We show that 
al' ...• an occur in the following order 

210g n, 210g (n + 1) •...• 210g (2 n -1). . (2. 1) 

Namely. no two of the ak's and no two of the numbers (2. 1) are con~ 
gruent mod 1. but each number in (2. 1) is congruent to just one ak. 

It follows from (2. 1) th at the lengths of the intervals defined by 
al' ...• an are 

21 n + 1 21 n + 2 21 2 n - 1 21 2 n 
og -n-' og n + 1 • . . .• og 2 n _ 2' og 2 n - 1 • 

1) Proc. Kon. Ned. Akad. v. Wetenseh .• Amsterdam 48.266--271 (1945) = lndaga­
tiones Mathematicae. 7. 71-76 (1946). 
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and so 

\ _ n log ( I + ~ ) \ n log ( 1 - 2
1
n tI 

n M n (a) - log 2 ' n mn (a) log 2 

For n-+oo, nM~(a) increases to the limit I/log2; nm~(a) decreases 

to the limit Illog 4; M~ (a)/m~ (a) increases to the limit 2. It follows that 
AI (a) = I/log 2, }.I (a) = I/log 4. PI (a) = 2. 

3. Lower bound for Ar(a). 

Let I a I be a sequence. n a natural number, and suppose that e is 
such that 

k M~ (a) < e. (n ~ k < 2 n) . . . . . (3. 1) 

Let the intervals determined by al"'" an be 11"", In, arranged in 
descending order of length. Denote the length of Ij by aj; so that 

al ~ a2 ~ ••• ~ a,,; al + ... + an = 1. • • . (3. 2) 

Now put in the points an+l. an+2 .... , a2n-l. Since any point "destroys" 
one I at most, there remains at least one interval of length ~ ap 

undisturbed af ter an+lr ... , an+p-I have been put in (I ~ P ~ n). Hence 

M~ (a) ~ al' M~+I (a) ~ a2' ••• , Min-I (a) ~ an; 

consequently, by (3. 1) and (3.2), 

e(~+n~1 +···+2n~I»1. 
It follows that for at least one k (n ~ k < 2 n) we have 

I (1 1 )-1 
k M k (a) ~ n + ... + 2 n _ I = On· 

We have On < 1110g 2, On -+ I/log 2, and so AI (a) ~ 1110g 2. This holds 
for any I a I; the lower bound is attained for the sequence of section 2. 

Similarly we can prove that for at least one k (r n ~ k < (r + 1) n) 
we have 

r ( 1 1 1 )-1 
kMda)~ -+ + 1 + ... + + 1 rn rn rn n-

and so 

Ar (a) ~ I/log ( 1 + ~) > r. 
4. Uppcr bound for }.r(a) 2). 

Let I a I be a sequence. n a natural number, and suppose that e is 
such th at 

(n < k ~ 2 n). . . . . . (4. 1) 

2) The proof presented in this section was found by Mrs. VAN AARDENNE-EHRENFEST 

independentl,y. 
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Let ak" ak., .•. ,ak2n be the cyclic order of the points al , ..• ,a2n on the 

circle (kl"'" k2n is a permutation of 1, ... , 2 n); put k2n+1 = kJ • IE 
ki = Max (kl, kl+J , n + 1), then the interval aki' akl+l is one of the 

intervals odetermined by al"'" aki. It follows that its leng th is less than 
e/ki. Hence 

2n 
1 > e I 11 ki. . . • • . • • . (4.2) 

i=J 

We have n < ki :=:;; 2 n, and any k (n + 1 < k -:::; 2 n) occurs Ek times as 
a k*; Ek = 0,1 or 2. It follows that 

2n • 2n 2 2n ~ 1 1 ~ 2n 2 
Il/kl= I -k+ I (2- Ek) -+I--k -:;::; I -k' 

1=1 n+J n+2 n n+1 

Finally, by (4.1) and (4.2) we infer that at least for one (n<k:=:;;2n) 
we have 

k m~ (a) :=:;; (n ! 1 + n ! 2 + ... + 2~) -I = ~n • 

We have Tn>I/log4, Tn~ I/log 4, and so lda):=:;;l/log4. Theexample 
of section 2 again shows that I/log i is best possible. 

Similarly we can show that for at least one k (rn < k :=:;; (r + 1) n) 
we have 

( 
r + 1 r + 1 )-1 

k mk(a):=:;; r n r + 1 + ... + n r + n -1 

and so 

. . (4.3) 

S. Lower bound for p. r. 

Let I a I be a sequence. We first prove that, for r;::: 1, n;::: 1 we 
have 

M~(a)/m~+I(a);::: 1 +! ....... (5.1) 
r 

We first suppose that r > 1. Let /1' /2' ... , / n be the in tervals of the 
n~th stage, i. e. the intervals determined by al' ...• an . Let ho be the 
one into which an+! falls, and let 

. (5.2) 

be consecutive on the circle 3). 

Put M = M~ (a), m = m~+! (a) and denote by MI the maximum length 
of the sum of r consecutive intervals from the set (5.2). Denote the 
length of hl by Pi. Let YI and Y2 be the lengths of the parts into 
which ho is divided by an+!. 

3) If 2 r - 1 > n the kj are not all different. 
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Clearly at least one of the numbers (:J-r+I' ... '{:J-I,{:JI' .... {:Jr-d{:Jjsay) 
is ;:: (MI-{:Jo)f(r-l); we may suppose that j> O. Now we have 

m :::;;'{:Jj-r+l + ... + 8_1 + rl + r2 + ... + (:Jj-I 

and hence 

. . . . (5.3) 

On the other hand it follows from 

that 

m:::;;'r2 + {:JI + ... + {:Jr-I:::;;' MI-rl 

m :::;;. {:J-r+1 + ... + {:J-l + rl :::;;. MI -)'2 

m :::;;. MI - } {:Jo.. . • . • • • • (5. 4) 

Trivially we have MI:::;;' M. If {:Jo:::;;' 2 MI I (r + 1) we infer 
m:::;;'Ml r/(1+r):::;;'Mr/(I+r) from (5.3); if (:Jo;::2MI /(r+l) we 
deduce the same result from (5.4). This proves (5.1) for r> 1. 

If r = 1, (5.1) immediately follows from 

m :::;;. Min (rl. )'2) ::::; } {:Jo ::::; t M. 

N ow suppose that n is a natural number and that for n r ~ k:::;;' n (r+ 1) 
we have 

M~ (a)/mna) <.( 1 + ~ )!( 1 + ~r. . . . . (5.5) 

It follows, by (5.1) that 

(n r ~ k < n r + n) 
and also 

m~n+nlm~n < r2/(l + r)2. . (5.6) 

Trivially we have m~n::::; 11 n; on the other hand. by (5.5) 

r > r Mr >- r r ~ r
2 

1 
mrn+n l+r rn+n::;"--l+r' rn+n-l ::>(r+l)2';;' 

This contradiets (5.6). Hence for at least one k (n r ::::; k ::::; n r + n) (5.5) 
is not true. It follows that 

1 
IJr ;:: 1 + -. . . . . . . . . (5. 7) 

r 

6. The inequalities (3.3), (4.3) and (5.7) are probably not best possible 
if r;:: 2. We conjecture that the expressions 

dAr-I) , dl-À.r) , r(IJr-1) 

tend to infinity if r .... CO • 

We owe some useful remarks to Mrs. T. VAN AARDENNE-EHRENFEST 

and Mr. J. KOREVAAR with whom we first discussed the above problems. 
i 




