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7. Same special squared rectangles. 

Two differently squared rectangles are called congruent if their reduced 
sides are two by two equal. They are called conformal if their reduced 
sides are proportional. From the list in section 6 we can easily ob ta in all 
cases of conformalor congruent rectangles of order less than 14. 

The simplest example of two conformal rectangles is provided by IX, 
130, c and XII, 585, f. in such a sense that they have together 21 elements. 
21 being the least possible number of elements totally involved. This 
example was already given in A (in that paper one should read cf = 55, 
instead of 15, p. 327). It may be noticed that the 12~th order squaring 
above shows two horizontal line segments at a same level. corresponding 
to a pair of equipotential vertices in the network from which it was derived. 
When this pair of conformal rectangles is made equal in size, they will 
show two elements in common. The imperfect squaring XIII, 1040, f' is 
also conformal with either of the squarings above. 

Next th ere are two pairs of conformal rectangles containing 10 and 13 
elements. The first pair is provided by X, 224, a , and XIII, 1008, b, whilst 
the second pair is formed by X, 224, band XIII, 1008, e. Either of the 
13~th order squarings contains two horizontalline segments at a same level. 
Upon transformation on the same 'size, four common elements are found 
in both cases. 

Furthermore, the 13~th order squarings XIII, 1060, e and f are conformal; 
they show five common elements af ter transformation on equal size. 

The following cases of conformal rectangles all include imperfections: 
XIII, 1088, k', I', m', two of which are even congruent, and XIII, 1088, 
g', h', i', j', three of which are congruent. 

The remaining conformal rectangles are all of the congruent type. Two 
congruent rectangles of different full 'sides are XII , 615, d and XIII, 1025, 
g; they have one element in common. Also congruent and of different full 
sides are XIII, 935, band XIII. 1122, a . It is interesting to no te th at 
they contain the same set of elements. It is the simp lest example of buil~ 
ding up a rectangle with the same set of elements in two different ways, as 
is seen by inspection of the list in section 6. This example is not new, as 
it was already derived in paper A, from certain general considerations, 
starting from networks with a pair of equipotential vertices. 

All remaining cases of congruence, as far as the list of section 6 is 
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concerned. are such th at they give pairs of squarings of the same order 
and the same fuIl sides. The simplest example is provided by XII. 608. f 
and g. They have four elements in common 1). 

A pair of congruent simple squarings of order 13. one of which is 
imperfect. is formed by XIII. 1025. b' and c. 

Five common dements occur in each of the following pairs of congruent 
perfect squarings: 

XIII, 928, hand i; XIII, 992, f and g; XIII, 1088, 0 and p. 
Four common elements in 

XIII, 1015, j and k; XIII, 1088, e and f; XIII, 1115, j and k. 
Three common elements in 

XIII. 1073, k and I. 
One common element in 

XIII. 1015, d and e; XIII, 1073, band c. 

Last but not least, there is in our list a pair of congruent squarings with 
no common elements, namely XIII. 1015, g and h. In fact it is the simplest 
example of a rectangle of given order that can be dissected into two 
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Fig. 9. The simplest example of congruent squarings with completely different sets of 
elements. 
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Fig. 10. The simplest example of congruent squarings with just the same set of elements 
differently arranged. 

1) See also paper A, p. 330; the concept of "equivalence" in A is completely differe:lt 
from that defined in section 3. In the sense of paper A. equivalent squarings are conformal 
and have the same full sides. 
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completely different sets of squares. It may be remarked th at they originate 
from essentially different networks, though their complexity is the same. 

Figs 9, 10 show the simplest examples of congruent rectangles that 
contain either a completely different set of elements, or just the same 
elements differently arranged. 

8. Perfect squares. 

We have already given the simplest example of a simple squared square; 
cf. fig. 1. It is not at all perfect, however, as it -contains double elements. 
One naturally asks whether a simple perfect square can be constructed. 
The authors of paper A have given a device how th is may be done. They 
pretend to have constructed "a simple 'uncrossed' perfect square of order 
55. which. when drawn out. disguises its symmetrical origin very skilfully" 
(A. p. 334-). In this section. however, we shall prove that actually the 
suggested construction fails. and so we are led to the conclusion that. 
unfortunately. there is no simple perfect squared square known at present. 

We first show how compound perfect squares can be obtained. Three 
different methods were developed in paper A. 

0' 
I 

Fig. 11. Several methods for the construction of perfect squared squares. 

I. Fig. 11, a shows a compound square, consisting of one square and 
two rectangles which in their turn are supposed to be dissected into 
squares. 

From careful examination of the list given in section 6 it appears that 
anly three different solutions exist if both rectangles are subject to the 
condition that their orders do not exceed 13. Two solutions are non~ 
trivially imperfect. as for each of them both rectangles are non~trivially 
imperfect themselves. One solution contains a square of si de 16. together 
with the squared rectangles XIII, 962, a' and XII, 585. a'. The ather con~ 
sists of a square 22, together with the squarings XII, 663, b' and XIII. 
1040, a'. 

Only the third solution happens to be perfect. It contains a square of 
side 231. together with the perfect squarings XII, 608, a and XIII, 985. a. 
Thus we have obtained a perfect square of order 26. Presumably it is th€. 
simplest (that means of minimum order) perfect squared square known at 
present. It was already given in paper A; its code has been given in section 
1 of the present paper. 
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2. Fig. 11. P shows a compound square, consisting of two squares and 
two rectangles of equal size which in their turn may be dissected into 
squares. 

Obviously, it is not difficult to construct non~trivially imperfect squares 
of this character: we merely take twice any rectangle of our list in section 6. 
On the other hand, there is in our list only one couple of squarings leading 
to a perfect square. This square is of the order 28, containing two squares 
of sides 422, 583, respectively, together with the pair of totally different 
congruent squarings of fig. 9. 

3. Cf. fig. II,y. 
For this purpose two perfect squarings of equal size are required, having 

only one element in common, subject to the condition that this common 
element is corner element in either of the two rectangles. In paper A a 
device was given how to construct a pair of such special rectangles. One 
of the simplest examples of perfect squares, constructed in this way, is of 
the order 39. lts code reads as follows: 

(900,393,520) (263, 130) (3,224,293) (133) (244, 152) (155,69) 
(61,91) (362) (31. 30) (276) (476,205,219,275) (191,14) (177,56) 
(113,218,638) (8,105) (80,199,97) (437,119) (420) (318). 

All squares so far obtained are compound. W,e now investigate in detail 
the method that (according to the authors of A) would lead to simple 
perfect squared squares. 

Consider the "rotor" network of fig. 12, with terminals Al' A2' A3' 
Let its wires have unit conductance, and let currents 87a, 87b, leave the 
network at A2' A3, respectively. The current entering at Al must then be 
87 (a + b). The complete set of currents is uniquely determined, and is 
shown in fig. 12. The currents are integral linear combination ~f a and b. 
Without lack of generality, we may suppose a and b to be integers, 
subject to 0 < b < a. 

This network is a generalization of the "polar" networks treated before, 
in so far that now more than two terminals are present. It corresponds to a 
squared polygon of angles n/2 and 3n/2. For example, the rotor network 
of fig. 12, in action, corresponds to a squared polygon P the dimensions 
of which are shown in fig. 13. 

The typical corner elemen ts C 1> C 2 (shaded in fig. 13) have si des 
27a - 8b, 8a + 35b, respectively. It must be noted that the situation of 
fig. 13 is possible only if 27a-8b < 49 (a-b) and 8a + 35b < 87b; 
thus 41/22 < a/b < 13/2. Otherwise at least one of the corner elements is 
too large. If the inequality above is not fulfilled, it is impossible to draw 
in fig. 13 the rectangle R which is important in the further construction. 

The vertical left si de of the polygon may be considered as the terminal 
Al' and the remaining vertical boundaries at the right correspond to A3' A 2. 
The current flows horizontally from left to right. The ingoing current 
87 (a + b) is equal to the left vertical side, the two outgoing currents 87 a, 
87b, are equal to the other vertical boundaries. 
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87b 
Fig. 12. Currents in a typical rotor network. 
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Fig. 13. Dimensions of the. polygon corresponding to the rotor of fig. 1-2. 



77 

If the skew~symmetrical rotor network of fig. 12 is replaced by its 
reflection (leaving the currents at Al' A 2 • A3' invariant). the new squared 
polygon P' will have the same shape as the old one P; this follows from 
the triad symmetry of the rotor. The set of currents in the reflected rotor 
are easily found from those in fig. 12. We also could have interchanged 
a and b. without reflecting the rotor; we prefer. however. the former 
method. in order to have always a> b in the following. 

The corner elements C\. C' 2 of P' have sides 27 a - 9b. 9a + 36b. 
respectively. In order to be able to draw the analogous rectangle R'. another 
condition has to be fulfilled. namely 40/22 < a/b < 17/3. IE both Pand P' 
have existing rectangles R. R'. we thus have the condition 

41/22 < ajb < 17/3. 

Let us now consider fig. 11. c5. It contains two congruent polygons; one 
of them (p) has full~drawn boundaries. the other (p') is partly dashed. 
Suppose (i) either of the two polygons is perfectly squared. (ii) the 
polygons p. p' have no common elements. except the pairs of typical corner 
elements Cl = C'l = SI' and C2 = C'2 = S2. overlapping two by two. Then 
it clearly follows: 1'. 1'1. 1'2 are squares. Furthermore. if these squares are 
mutually unequaI. and none of them is equal to some element of p. p'. then 
fig. 11. c5 obviously leads to a simpte perfect squared square. The elements 
not drawn out in fig. 11. c5 belong to p. p'. 

This is in fact the construction proposed in paper A. in order to obtain 
simple perfect squares. For an actualexample we only need two suitably 
chosen polygons p. p'. The authors of A suggest that the rotor network 
of fig. 12 leads to such a pair of polygons. This. however. is not true. as 
will be seen below. 

It is important to note th at the shape of P. P' can be varied by varying 
a and b. Obviously. there is only one degree of freedom. as only the ratio 
ajb is significant. It must be taken in mind that the elements of P. P' alter 
correspondingly. by variation of a/b. Now. Pand P' can be used as p. p' 
respectively. if. and only if. C l := C'!; C 2 = C'2. That means 

27a-8b 

8a + 35b 

27a-9b. 

9a + 36b. 

These independent conditions admit only a = b = O. Hence the con~ 
struction of fig 1 L c5 fails for the rotor network of fig. 12. 

This can also be seen in a somewhat differing manner. IE P is to be used 
as p. then the rectangle R in fig. 13 has to be a square. corresponding to 
l' in fig. 11. c5. From this condition it follows 87b- (8a + 35b) = 
= 49(a-b) - (27a-8b); thus 10a = 31b. For the special values 
a = 31. b = 10 (the inequality above is fulfilled!). one can only hope 
that the now uniquely determined polygon p' can be used as the counter 
part pi of p = P. This. however. is not so. R' is even not a square. let 
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alone it is equal to R, as is required. In fact, R' is a square, iE, and only 
if, a = 91, b = 31. 

Thus the construction fails. There is, consequently, no simple perfect 
squared square known at present. Moreover, it will be very unlikely, that 
for some other rotor network the above construction is effective. 

July, 1946. 
Natuu,rkundig Laboratorium der N.V. Philips' 
Gloeilampenfabrieken. Eindhoven, the Netherlands. 


