
Mathematics. - On the dissection of rectangles into squares. (First eom­
munication. ) By C. J. BOUWKAMP . (Communicated by Prof. J. G. 
VAN DER CORPUT.) 

(Communicated at the meeting of November 30, 1946.) 

1. Introduction. 

Many mathematical problems originate from early puzzling and reerea­
tion. For instanee, the problem of magie squares. Less known is the puzzle 
problem :treated below, namely that of clte disseetion of a reetangle of com­
mensurable sides into a finite number of non-overlapping unequal squares. 
!Jy means of straight line segments .drawu parallel to the sides of the rec­
tangIe. The latter problem is, unlike that of magic squares. of very recent 
times only. 

The first example of a reotangle. divicledinto (nine) incongment squares, 
was apparently given by MOROn in 1925. It was also published in various 
books on amusement-mathematics, sueh as KRAITCHIK'S "La 'Mathématique 
des Jeux". 

From the present aUibhor's own experience it may be conduded that 
skiHul puzzlers do notencount·er great difficulties in constructing such a 
squared rectangle. containing a small number (10. say) of sqUélTes. The 
question to construct all the possible rectangles with 10 squares, however, 
will not be sa easily answerecl. In this connection .jt may be remarked that 
ûnother nine-squares-solution was published in 1940 only 1). 

Alreacly DEHN remarked that the difficulty of the problem is the semi­
topological one of charaeterizing' how the various squares fit together. 
This difficulty has beeucompletely overcome by the authors of paper A. 
Curiously they succeeded to associate a squared reotangle with the flowing 
of electric currents in certain networiks. This provides a typical exampte 
of how to overcome mathematical diHiculties by adequate physicaI 
reasoning. 

The afore-mentioned authors have proved that 9 is the minimum num­
ber of two by two unequal squares that can completely build up a rectangle 
without overlapping one another. Moreover they have shown that there 
exist two ninth-order 2) solutions, apart from those obtained by trivial 
trê.nsformations, such as reflections, rotations. Furthermore they found 

1) R. L. BROOKS, C. A. B . SMITH, A. H. STONE and W. T. TUTTE, The dissectio:l 
of re~tangles into squares, Duke Math. J. 7, 312-340 (1940) . 

Henceforth this fundamental paper wUI be quoted by the letter A; special attention 
may be drawn to the bibliography at the end of A. 

2) The finite number of squares in a dissection is called the order of the squaring. 
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6 solutions of order 10, 22 of order 11, and 67 of order 12. Only for 
squared rectangles of order 9 and 10 were the elements 3) of the dissec~ 
ti on explicitly given, whilst for squarings of order 11 only the "fuIl" sides 
were specified in paper A. 

Basing ourselves on the fundamental paper A, we have constructed the 
squarings of order less than 14. We found their total number amounting 
to 311; 214 of them are of order 13, the remainder being as specified 
above. 

The following- definitions are frequently USE!'d in A as weIl as in the 
present artide. A squaring is called perfect if all the squares of the dissec~ 
tion are two by two unequaI. Otherwise the squaring is called imperfect. 
Vve are mostly interested in perfect squared rectangI'es, though a certain 
type of imperfect rectangfes will be considered Itoo, namely the so~called 
non~triviatiy imperfect ones. The latter may contain equal elements; only 
in such asense, however, that equalelements have never a side in com~ 
mon; nor must it be possible to 'get them in such a position by a trivial 
displacement of some of the e1ements. The remaining. imperfect squarings, 
called trivially imperfect, a're not investigated here. 

A squaring is called compound if it is possibl'e, by suitably omitting of 
some (not all, but at least one) dissecting line segments, to -get the original 
rectangle dissected (by the remaining segments) into rectangles, not neces~ 
sarily squares. IE this is not possible, the squaring is called simpie. 

Furthermore, a compound s-quaring is called trivially compound if one of 
the elements has a side equal to one of the sides of the squared rectangle 
under consIderation; when this element is omitted, a squaring of order one 
less can be obtained. Gonversely, once a squaring of order n is given, one 
cRn readily obtain two different trivially compound squarings of order 
11 + 1, by merely introducing an 'extra (n + 1 )~th square whose side equals 
one of ,the two sides of the given n-th order rectangle. Compouad squarings 
that are not trivially compound are called non-trivially compound. 

It will be dear that in .case of simple squarings the character of imperfec~ 
tion is only non-trivial'. 

As already stated, our invesUgation is not restricted to perfect squarings. 
We rather consider all the simple ones, whether they are perfect or im~ 
perfect. In addition to the numbers of squarings giv,en previously, which 
are in fact the simp Ie perfect ones, ,there are 43 simp Ie imperfect squarings, 
namely 1, 0,0,9,33, of order 9,10,11,12,13, respectively. 

Our main aim is then to dassify those 354 simple squarings of order less 
than 14. 

Of course, there still remain some other perfect rectangles, namely the 
compound ones. It can be shown Ithat aH the compound perfect squarings of 
order less than 14 are trivially compound, with only one exception. The 

3) The squares of a squared rectangle are called elements of the squaring. 
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cxceptional case. which is thus non-trivially compound. consists of a rec­
tangle dissected into 4 squares and 1 rectang1le. the latter in its turn being 
dissected into 9 unequal squares (details will be given in section 5). The 
trivially compound perfect squarings can be derived in a trivia I manner 
from the simpte perfect ones of lower order. namely by introouction of a 
new element whose side is equal to one of the sides of the original simple 
perfect squaring. There are 4. 16. 60. 195. compound perfect squarings of 
order 10. 11. 12. 13. respectively. 

In addition to the number of 275 compound perfect squaring's above. there 
"re similarly 28 compound non-trivially imperfect ones. namely 2. 2. 2. 22. of 
order 10. 11. 12. 13. respectively. They cao. be derivoo in a trivia I rnanner 
from the simple imperfect squarings of order less than 13. with only two 
exceptions whioh will be given in section 5. 

Only the trivially imperfect (which are compound too) squarings are not 
yet enumerated. Unfortunately these squarings cannot be found in some 
trivia I rnanner. Furthermore. without the restriction on imperfection. the 
total nurnber of squared rectangles would become too large for adequate 
classification. For instance. there are already 1.1. 2. 5.11.29. trivially im­
perfect squared rectangles of order 1. 2. 3. 4. 5. 6. respectively. These are 
the reasons why we omit the trivially imperfect rectangles in our further 
investigation. 

A complete specification of Ithe various types of squared rectangles of 
order not exceeding 13 is given in table I. 

TABLE I. 
Numbers of squared rectang!es of different type. and of order less than 14. Only the 
trivial imperfections are excluded (the latter show equa.J elements Iying aside. and thus 

belong to the compound ~ype). 

~ I I 1 12T13 9 10 11 Total 
Type 

Simpie. perfect. 2 6 22 67 214 311 
Simpie. imperfect. 1 0 0 9 33 43 
Trivially compound. perfect. 0 4 16 60 194 274 
Non-trivially compound. perfect 0 0 0 0 1 1 
Trivially comp .• non-trivially imperfect 0 2 2 2 20 26 
Non-triv. compound. non-triv. imperf. 0 0 0 0 2 2 

Perfect 2 10 38 127 409 586 
Non-trivially imperfect 1 2 2 11 55 71 

Tota! .............. . 3 112 I 40 1 138 I 464 I 657 

It is interesting to note that there is only one square amongst the total 
number of 657 squared rectangles so faro obtained. It is of the order 13; 
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although it is simpie. it is to a hig'h degree imperfect. as it contains 5 pairs 
of equal elements. lt provides the simplest example of a simple squared 
square, in 50 far that 13 is the minimum pos5'ibIe order of such a square. 
This remarkable square is drawn out in fig. 1; the variou5' numbers corres~ 
pond to the relative linear sizes of the elements. 
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Fig. 1. The simplest example of a simple squared square. 

It is of course impossible to draw out in th is journal all the 657 squared 
rectangles as specified in table I. Even the total number of 354 simple 
squarings would require too much space. The difficulty. however. can he 
easily overcome by a suitable co ding system. 

First we suppose the rectangle to be ·drawn out in such a manner that 
its largest sides are 'horizontal. Then. the element in the upper~left corner 
should not be smaller than the Ithree remaining corner elements. Now. for 
oDders notexceeding 13. the geometrical configuration of the simple squa~ 
rings appears to be unique except in the case of the square of fig. 1. Hence~ 
forth we will always "orient" a squared rectangle in the above sense be~ 
fore the proper coding starts. though this is not necessary. 

Now the given oriented rectangle is squared by horizontal and vertical 
line segments. Consider the group of elements with their upper horizontal 
sides in a common horizontal segment. The individual elemen:ts of this 
group are conveniently ordered by a reading from Ie ft to right. The 
various groups themselves are ordered according to upwards~downwards~ 
reading. starting with the upper horizontal side of the given rectangle. If 
llecessary. line segmenrts at the same horizontallevel are ordered from left 
to right too. In the written code Ithe various groups are separated by paren~ 
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theses, the elements of a group 'by commas. Thus the code of the squared 
square of fig. 1 reads as follows 

(12,11) (1,3,7) (11, 2) (5) (2,5) (4,1) (3). 

This system of coding provides us with a very simp Ie method to pass over 
from code to figure, and vice versa. So MOROn' s solution (cf. fig. 4 'Y) is 
cod'ed as 

(18,15) (7,8) (14,4) (10,1) (9), 

and the other perfect nine-squares-rectangle is (see fig:. 4 P) 

(36,33) (5,28) (25,9,2) (7) (16). 

The coding of ,compound' squarings is similar. As an example we may give 
the code of a perfect squared square of order 26, published in paper A, fig. 
9. p. 333. namelry 

(231, 136. 123. 118) (5.113) (20.108) (95.34.7) (27.61) 
(209.205.194) (11,183) (44.172) (168.41) (1,43) (42.85). 

This squared square is compound. consisting of one square and two rec­
tangles which in their turn are dissected into 12 and 13 squares. respecti­
vely. Probahly it is the simplest (that means of minimum order) perfect 
squared square. known at present. 

The few examples above cIearly demonstrate the usefulness of our coding 
system. 

2. Squared rectangles from an electrical point of view 4). 

Let us suppose an oriented squared rectangle to he drawn upon a thin 
meta! plate. The upper and lower si.de of the rectangle he electrodes of in­
fiIlJÎte1y conducting material. Next a downwards flow I of electric current 
may 'exist throug:h this plate, and 'due to a potential difference V across 
the electrodes. By a suitable choice of units we can suppose the number I of 
the tota1 current to he equal to the value of the horizontal side of the rec­
tang Ie. In the same manner V may he taken equal :to the heig·ht of the rec­
tangIe. The flow is homog'eneous; stream lines are vertical. equipotential 
Hnes are horizontal. Let us now make infinitely thin cuts along the vertical 
Hne segments; this does not influence the flowing. 1Ihe various squares still 
remain connected to one another by means of the horizontalline segmer.,ts . 

We have now obtained' an electr.ical "network". in which the current 1 
is streaming throug:h "wires" . each of whioh is a thin metal plate. Ever)' 
such "wire" is flown through by a certain current i. while its ends show 
a potential difference v. On account of our choise of units. the ratio vii is 

4) We are indebted to Prof. VAN DER POL and Mr VAN DER MARK for most valuable 
discussions. 
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equal to 1 for all the "wires"; that means their ohmic resistances are all 
equal to 1. 

We want to have this "network" .uansformed into a more conventional 
ooe. Theretofore let usconsider some "wire". We cut it along the upper 
and lower side. from left as weIl as from right. up to its middle vertical 5) . 
The freecoming left~ aIl'd rig.ht~hand parts of the square plate are then rolled 
up towards the middle vertical. andafterwards melted together in the form 
of a true wire. The current throu'gh the "wire" is the same as ,tha.t in the 
true wire. The same holds with regard to the potential difference v across 
it. The network still remains connected via the horizontal l'ine segments. 
once the transformation is applied to aH elements. Finally. we contract 
cach infinitely conducting horizontalline segment to a single point. Espec~ 
ially. the horizontal sides of the rectangle are transformed into the termi~ 
nals' or poles of the network. Each element of the squared rectangle now 
corresponds to a wil'e. each horizontal line segment to a vertex. and 
finally each vertical line segment to a mesh. not containing other parts of 
the ne:twork in its interior. 

43 

Fig. 2. Currents in the netv/Ork correspcnding to the squared square of fig. 1. 

G) We suppose the horizontal line segments to be of perfectly conducting material. 

76 
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The network corresponding to the squared square of fig. 1 is given in 
fig. 2. The arrows denote the directions of the currents. the numbers their 
relative magnitudes. IE this network is realized by ohmic resiSitances of 
1 ohm, then a potential diHereIliCe of 23 volts between the poles causes a 
current of 23 amperes through the networlk. Therefore, the subSititutional 
resistance of this special network is also equal to 1 ohm. In general the 
resulting resistance will be smaller, because for an orienlted rectangle I > V. 
Hence, from an eIbgineer's point of view, Ithe network of fig. 2 is very 
rcmarkable: it provides us with the simplest planar 6) network, without any 
series or parallel connection, that can be built up with equal resistances, all 
showing non~zero currents, such that the resulNng resistance is equal to 
that of the individual wires. 

It is evident :that the energy V.l, delivered to the network hy the source, 
is transformed into Joule hea1t Z vi; indeed, the area of the rectangle is 
equal to óhe sum of the areas of the individual squares. 

This association of linear graphs with squared rectangles was firSit de~ 
rived in the quoted paper A, though not so physically as we did above. 
We showed that the squaring is a real network; the wires are only square 
metal plates. 

1t is conv'ell'ien1t to join the pol'es of the network by an extra wire that 
contains the exterior source. The network obtained in this manner is planar, 
as is obvious from the construction above. A further simplification can be 
arranged by projecting the network upon a sphere because ithen all the 
wires, including that containing the source, are topologically equivalent as 
far as the concepts of "interior" and "exterior" are concerned. 

Thus, starting with all' oriented squared rectangle of order n, we ohtain, 
in a unique wa)', a network on the sphere containing n + 1 wires which do 
not cross each other. It will he clear that a similar construction holds if one 
starts with a rec;tangle, dissected into rectangles that are not necessarily 
squares. 

Converse1y, starting- with aplanar network on the sphere, containing 
n + 1 wires (having '9'eneral values of resistance), and af ter placing a 
source in one of them (no matter which one), we are led t~· an electrical net~ 
work in which the currents and voltages are calculable by the laws of 
KIRCHHOFF. This network can he drawn in a plane in such a way th at the 
pol es lie at the outside, and are joined by the source~containing wire, which 
will be omitted further on. The resulting "polar" network, together with its 
currents and volta-ges, can he moulded into lÎ'he unconventional form con. 
sisting of rectangular plates. The final result is therefore a rectangled rec. 
tangIe. 

In case of equal resistances, the rectangle hecomes squared; its order is 
n or less. The latter addition is necessary hecause, aCcidently, some wires 
may he current·free, due, for instance, to properties of symmetry (in elec~ 

11) A network is called planar if it can be drawn in a pJane without crossings. 
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tricity, wires with zero-<:urrents are called "conjugate" to that containing 
the source). Obviously, a zero-current wire corresponds to a square 
of vanishing dimensions. This recluction of the order mayalso occur in case 
of un-equal resistances, though ingeneral n will be the actual number of 
elements in the rectangled rectang,le. 

It is clear that the difficulty >to .describe how the squares fit together has 
now been overcome completely. The question how to obtain the possible 
squarings of order n is reduced to a merely combinatoriaI problem: how to 
obtain the possible 'topologically different connect.ed networks, involving 
n + 1 wires, that can be drawn on a sphere without crossings. Every such 
network will then give rÏ'se to a class of squared rectangles. The number 
in a class is at most n + I, correspoIl'ding to as many places for the exterior 
source. 

3. Duality. Bounds for the numbers of vertices and meshes in terms of 
the numbers of wires. 

In electricity the interchanging of voltages and currents is governed by 
the principle of duality. lts interpretation in terms of rectangled rectang!es 
is as follows. Instead of taking theel'ectrodes a!on9' the horizontal sides of 
the rec'tangle, we may take them along the vertical ones. Accordingly, 
stream lines and equipotential lines have interchang,ed 7); the same holds 
with regard to the vertices and meshes. The ohmic resistances of the respec­
tive polar networks are obviously reciprocal; so are the resistances of cor­
responding wires. Thus, these two polar networks are electrically dual. 
The corresponding "completed" (af ter joining the poles by the extra wire) 
networks N, N' on the sphere (we ignore the numerical values of the resis­
tances) are said to be topologically dual. Unless otherwise stated, we use 
here the concept of duality in a topologically sense only. 

Dual' networks can be drawn in such a manner that the vertices of either 
of them lie instde the corresponding meshes of the other, whilst correspon­
ding wires, and only these, cross each other 8). 

Roughly spoken, only one half of the tot al number of networks needs be 
investigated, as a pair of dua! networks leads to one class of rectang!ed rec­
tang!es. Similarly, in case of self-dua! networks, only hal'f the number of 
wiresneeds insertion of an exterior source. 

Our aim is to obtain the possible squarings up to a certain order with 
the only restriction that, in case of imperfection, equa! elements do not lie 
aside, i.e. have na sides in common. Therefore, in the polar networks, simple: 

7) "Cross-points", which a1"e common to four elements of the rectangling, should 
be first removed by suitable small displacements of some of the line segments; jf not, 
there remains an ambiguity in the "cutting" process. 

8) Cf. B. D. H. TELLEGEN, Geometrical configurations and duality of electrical 
networks, Philips tech, Rev. 5, 324-330 (1940) . 
-----, Meetkundige configuraties en dualitei,t van electrische netwerken, Tijd­

schr. Neder\. Radiogenootschap 9, 37-60 (1941). 
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wires in series or parallel connection are forbidden. Furthermore, we mày 
suppose that even the "completed" network on the sphere does not con~ 
ta in such connections because it would91{ve either forbidden imperfect rec~ 
tangles or trivially compound ones; in the latter case the largest element of 
the squaring would lie along the whole of one of the sides of the rectang,les. 
As we already saw, the trivially compound squarings are not very interes~ 
ting because they can he obtained in a trivial manner from squarings of 
lower order. 

Let N be aplanar network, containing T wires, K vertices, and ' M 
meshes. On account of EULER's polyhedron formula one has 

K+M=T+2. (1) 

As N does not contain any pair of wires in series, at least three wires 
come together in each ver:tex. Therefore, twice the number of wir es cannot 
be less than three times the number of vertices: 

K~2TI3. (2) 

Together with (1), this yields for the numher of meshes 

M?:; 2 + T13 .. (3) 

Let N' be the dual network of N 9). ks numbers of wires, vertices and 
meshes are T' = T. K' = Mand M' = K. respectively. 

The inequalities (2), (3) apply al!so to N'; therefore, interchanging of 
K, M is allowed. We thus obtain for K, M the same upper and lower 
bounds: 

T+6 2T 
-3-~(K,M)~3' . (4) 

Theconditions (-4) are only necessary; 'bhey do notguarantee the plana~ 
rlty of the network satisfying (-4), Although we may certainly confine OUT~ 
selves to networks fulfilling (-4), many among them appear non~planar, Of 
course, the latter cannot he used in the construction of squared rectangles. 

We would like to mention an interesting interpretation of EULER' s poly~ 
hedron formula (1). If nl' n2, denote the numbers of the horizontal and ver~ 
tical line segments, respectively. lyin91 inside the rectangled rectangle of 
order n, othen nl = K - 2, n2 = M - 2, n = T - I, and hence n = nl + 

9) Two pol ar networks NI (poles Pl, ql) and N2 (poles P2. q2) can be united to a 
"compound" network ,in two different wa,ys by suitable coalescence of the respective 
poles, namely either by PI +-+ P2, ql +-+ q2 or by Pl +-+ q2. q 1 +-+ P2' These two 
distict (in a topological sense) networks are electricallyequivalent. If equivalent networks 
are identified. there is only one network N' dual to N. as was shown by WHITNEY. 
Cf. the second of TELLEGEN's papers quoted above. Squarings corresponding to equi­
valent networks are not essentia~y different as they can be transformed into one another 
by trivia I geometrkal displacements (reflection, rotation. translation) of some of the 
elements, 
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n~ + 1. Therefore. the total number of elements in any dissectionis one 
more than is the total number of dissectingl line segments. Cross~points. 

however. must be first removed. 
In table 11 the possible combinations of K. M. T are given as far as squa­

rings of order less than 14 are concerned. It also shows the number of the 
vertical and horizontalline segments. which numbers are very characteristic 
for any given squared rectangle. On account of (4) they satisfy 

n+l 2n-4 
-3- :s; (nl' n2) :s; 3 . (5) 

TASLE 11. 

Possible combinations of wires (T). vertices (K) and meshes (M) of the required net~ 
works. The same with regard to the order (n). horizontal (nl) and vertical (n2) line 

segments of the corresponding squarings. 

T K.M n nl. n2 

6 4.4 5 2.2 
7 6 
8 5.5 7 3.3 
9 5.6 8 3.4 

10 6.6 9 M 
11 6.7 10 4.5 
12 6.8 11 4.6 
12 7.7 11 5,5 
13 7.8 12 5.6 
14 7.9 13 5.7 
14 8.8 13 6.6 

4. Construction of the required netwarks. Nine is the least passible 
order of a perfect squared rectangle. 

We will now briefly in'dicate haw one can obtain all the required net~ 
works. such th at certainly none of them has been overlooked. Again. we only 
consider networks withou,t wires in series or parallel connection; the numbers 
of wires and vertices he T ancl K. respectively. 

Henceforth a vertex is called a pn ifit is a junction of n wires (n:> 3). 
The number of vertices pn will be denoted by Xn (:> 0). These numbers 
obviously satisfy 

X3 + Xi + X5 + .... = K. 

3X3 + "lXi + 5X5 + .... = 2T. 

Por small values of K. T. the solutions of this diophantine system' are 
easily obtained. Same si~plification is gained by firsteliminating x3. viz. 

Xi + 2X5 + 3X6 + 4x7 + .... = 2T - 3K. (6) 

As an example. take T = 13. K = 8; then 2T - 3K = 2. Obviously 
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Xij. X7 •••• must he all zero. The only possible types of vertices are P3. P4. P5' 
Moreover. there are either one P5 or two P4·S. the remaining; vertices being 
P3·S. Therefore. concerning the character of the vertices occurring in this 
example. only the following combinations are possible: 

7P3 + Ps : 6P3 + 2p4' 
H. given T, the numbers K, Mare unequal. we may confine ourselves 

to K > M, as follows from the principle of duality treated in the preceding 
section. Of course. one could also confine oneself to K < M. We. however. 
prefer the former restrietion because then the right~hand side of (6) is 
smaller. and so is consequently the number of possible combinations of pn'S 

to be investigated. 
With this in mind. the possibl'e combinations of Ibhe various types of 

v'ertices for squarinHs up to the ol'der 13 are easily derived. They are given 
in tahle 111. 

TABLE III. 
Possible combinations of vertices as a function of the numbers of wires and vertices. 

T 

6 
7 
8 
9 

10 
1l 
12 
12 
13 
14 
14 

K 

S 
6 
6 
7 
7 
8 
8 
8 
9 

4P3+ P4 
6p3 

SP3 + Ps: 4P3 + 2p4 
6P3+ P4 

Combinations of vertices 

6P3 + P6: SP3 + Pf + Ps: 4P3 + 3Pf 
8p3 
7P3 + Ps: 6P3+ 2pf 
7 P3 + P7: 6P3 + Pf + P6: 6P3 + 2ps; SP3 + 2Pf + Ps: 4P3 + 4pt 
8P3+Pf 

The first combination of table III (i.e. 4p3, T = 6. K = 4) onlyadmits 
of the tetrahedron. This network is self~dual; cf. Hg. 3a. In case of T = 8 
the only possible network is tJhe self-dual four~sided pyramid of fig:. 3b. 
For T = 9 one obtains the self-dual three~sided prism (fig. Je) together 
with the simplest non-planar network (fig. 3d). which can be omi1tted fur~ 
ther on. For T = 10 our "sieve" yields 4 networks. one of which is non~ 
planar. The combination 5P3 + P5 gives rise to the self-dual five~sided 

pyramid of fig. 3e. The comhination 4p3 + 2P4 admits 3 networks of which 
2 are planar. 

The latter combination will be Itreated in some detail. as it may give an 
idea of how the higher networks were actually obtained. 

Two distinct cases may occur as to wh ether or not the pair of P4'S are 
connected by a wire. IE they are not connected. any of the 4 remaining P3'S 
must be joined to both of them. The two remaining wires can yet be 
placed in one way only. and the final resuIt is a parallel (or series) con~ 
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nection of two Wheatstone bridges; cf. fig. 3[. In the other case. where the 
vertices P4 are connected to one another. either three or two of the P3'S 

must he connected to each of ,them. In the first case the yet unconnected P3 

must he joined to the other three P3'S, giving the non~planar network of fig. 

Fig. 3. The simplest networks up to T = 10 (K > M). 

3g. In the second case the two points P3. which are connected to ho th P4'S, 

cannot he connected to one another; óthe other pair of P3'S must do so, 
however. Furthermore, the two wires. not yet used, can be placed in one 
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Fig. 4. There are three simple squarings of order 9, two of which are perfect. 
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way only, anel the result is the self~dual network of fig. 3h. Drawn in 
space, it is a three~sided prism with a diagonal in one of its uprising sieles. 

It is not difficult to see that out of the six planar networks in fig. 3 there 
is at most one (3h) that can be used in our problem because, on account 
cf ,the large degree of symmetry, the other networks will show either (i} 
él tieast one zero~current or (ii) equal curren ts giving rise to trivial im~ 
perfection, after the insertion of a sourc,e in one of the wires (all having 
the same resistance). 

FurthermQre, in the network 3h only 6 of the total number of 10 wires 
need be broken up on account of symmetry properties. This number is 
again reduced to 3 because the network is self-<luaI. In fig. 3h the yet 
remaining wires are distinguished from each other by a, {J, r; their "duals" 
are primed correspondingly. W'hen the source is inserted in a, the network 
gives a simple squaring of order 9. Although th is squaring is imperfect, 
showing double elements, it is only non~trivial1y imperfect as equal ele~ 
I!lents do not He asiele; cf. fig. 4a. Two different perfect squarings of order 
9 are obtained if the source is placed in {J, r, respectively. They have been 
elrawn out in fig. 4{J, r. 

We have thus shown in detail that 9 is the least possible order of a 
perfect squared rectangle; and. there are only two clistinct solutions invol~ 
ving nine elements. 


