Mathematics. — Line geometry and Quantum mechanics. By E. M. BRUINS.
(Communicated by Prof. L. E. J. BROUWER.)

(Communicated at the meeting of November 26, 1949.)

§ 1. Introduction.

The essential difference between classical physics and quantum physics
lies in the fact, that classical physics specifies a physical state by a finite
number of coordinates, whereas quantum physics uses in principle an
infinite number of coordinates. The series of coordinates e.g.

a;,a3,a3,...4an,.

was represented in quantum physics (using some system of orthogonal
functions) by a function of an auxiliary variable &, the wave function,
Transition to a different ordertype of the coordinates gives us another
representation of the same state: e.g. the ordertype w 2

a1,a83,85,... ; d2,84,86s...

specifies the states by means of two functions of one variable. An ordertype
w". » would specify the states by means of x» functions of n variables.
So neither the number of functions, nor the number of variables used is of
fundamental importance.

On the other hand the structure of Dirac equations, being formally that
of the incidence of a point and a line in threedimensional projective space
G4, suggests from the mathematical point of view the use of the theory of
projective invariants, of complex symbols rather than a tensor calculus using
special metrical tensors. Also the Poisson brackets of classical physics
correspond to algebraical expressions in quantum mechanics! In the
following we show that indeed the formalism of a geometry of second
order, that of line geometry in G4 is extremely simple used for quantum-
physical purposes.

§ 2. Generalisation of Dirac equations.
a. A linecomplex g2 in Gy:
Q274+ Q3 +...=0,
can be represented symbolically by (g2 #2) — 0 and has only one invariant

(q2 Qf) =-Q(q2) =q1293¢ + Q13942 + Q14 Q23

from which, as is well known, follows an isomorphism of the projective
group in G4 and the sexternary group leaving invariant 2(q2). The relation
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can be transformed by one of FELIX KLEIN's substitutions in the sum of
six squares e.g.

Q+iQs=q; » Q—iQ;=q3s . —Q:—iQs=gqy
Q—iQs=qs . Q+iQ;=qp . —Q:+iQs=4qy;.
With these coordinates corresponds a differentialoperator in six-
dimensional Euclidean space Eg:

Av+ile=

0 0 : oA
P + dime 012=— 021 =034 = — 043, etc,
which allows to introduce an alternating differentialoperator of order 4 in
threedimensional space described by complexsymbols transforming
cogredient to the points. We have then immediately the relations between
the sixdimensional linear form (A’Q) and the quarternary bracket (02 q2)

(A’ Q) =2divQ = (0%¢?
(02 9?) = 4¢ = Laplaceoperator.

An alternating 2-tensor in Eg corresponds with a pencilcomplex in Gy4;
a symmetrical 2-tensor with a quadratic linecomplex.
Rot P’ can e.g. be represented by

(A’n) (=zP’) in Eg, ntjap = — ag i,
and pushing down into G4 we obtain
@*7%) (e?p?) . a'-@?=—g?- 7
The components of Rot P’ are thus expressed by linear combinations
of the 15 coefficients of a pencilcomplex in Gy.

The symbolical methods for the study of these forms have allready been
discussed by R. WEITZENBOCK, Komplexsymbolik (1908).

b. The necessary and sufficient condition for the possibility of
splitting up
fi gi
fr gk
in which f, g are transforming cogredient to the points of G, is, that the
linecomplex g2 be a special linecomplex i.e. (q2 q;2) = 0.

The Moebius correlation with regard to a general linecomplex is given
by (g2 xy) = 0. There exist points with an undetermined conjugated plane

only for special complexes and for the points x, on the axis of the complex,
holds

qix=(fg)ix=

(q®xy) =0{yi.
The equations of motion of the free Dirac electrons are given by the
condition that [ lies on the axis of the special linecomplex 0%
The conditions

(0*fg) =0{g}
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read, written in full
034 f2+ 042 f5+ 023 f4 =0
034 fi + 013 fs +0u f5=0
021 fs+ 042 i + 01, f2=0
01235+ 02 £+ 095 2=0

Introducing the operators

0
0
and the matrices
0001 00 01 0 01 O
0010 ) 00—10 0 00—1
ay = y Gy =—1 y a3= , ,
0100 01 00 1 00 O
1000 —10 00 0—10 O
10 0 O 00—1 O 1000
01 0 O |00 0-—1 o100
a,= , a5=1{ ., Gg—=—
00—1 O 10 0 O 0010
00 0-—1 01 0 O 0001

this system reads
Zak Pk f 0 . . . . . . . . (1)

A quantity fi 70 can only exist if the symbolical invariant of the
operator 02 vanishes i.e.

@) - f=dg-f=0. . . . . . . . (2

From the fact that the px transform contragredient to the points of Eg
and from the invariance of equation (1) it follows that the ax must
transform cogredient to the points of Eg4. (see also Remark I).

To a physical state we make correspond a special symbolical linecomplex.
The equations (1), (2) then contain a generalisation of the Dirac equations
of motion of the free electron, and are easily identified with those if we,
e.g., specialising, put

ﬁ-:e/‘x‘fi. (x,.xz.x3.x6).

c. General equations of motion for non-free particles lie before hand:
they can be obtained from the, only possible, projective invariant form

@ fg)+(Efg)=04gi. - - . .. . . (3)

If we put, specialising,

aff (moc—A) fi afi:Sf,-

OX4 axS
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and apart from numerical constants
C=(ax.0y,0,, 4,8, i9p)
we obtain the well known Dirac equations for the electrons in an arbitrary
field. The postulate of Dirac
Pk => px + ck

corresponds to the postulate of projective invariance in G4.
That the corresponding wave equation of the general equations of motion
contains 15 additional spin terms is evident from the multiplication into

(ay p1 + a2 p; + a3 ps + a4 py + as ps — ag ps) of (3).
d. We can also specialise the equations (3) by supposing a relation

between the fi, which can be interpreted as a structure of the particle. If
e.g. we put

0fn _
axs—%‘A"k fk

the equation (3) becomes with 5 variables
. 0
(za;tr+“#L#+a#avf1ﬂv+Mll1”) -f=0
Xu

Apv:'_Avy (H.v:l,2'3.4'5)

which are Moller’s meson equations 1), The matrix ||A|| can be a general
matrix; without a relation between the fi; we cannot obtain terms a, a, in
an invariant way as a matrix that anticommutes with a;, as, a3, a4, a5 must
vanish.

§ 3. Densities in quantum mechanics.
a. Let us consider the quantities
k=9 axp,
the sixth component is apart from a constant the quarternary linear form
— (¢’ @). As is easily controlled we have
6 s
3 2= 3 (¢ axp)?=0.
k=1 k=1
The vector j, in Eg is an isotrope vector.
b. Between the ax, k = 1, 2, 3, 4, 5 we have the relations
a; Qg — — Ak a;
ay (12(13(14:05.
If now we form the quantities

’ o . o oA 7
Pi=¢ arp ;s pu=9¢ aiakp ; qri=¢ ajara;p ; ap=¢ ajarajamep

1) C. MoLLER, D. Danske Vid. Selsk. math.-fys. Medd., 18 (1941).
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we can represent P, p2, g3, a’ by a point P, a planecomplex p2, a
linecomplex ¢3 and a G4 in Gs.
Because of the commutationrules between the ax we have
a;ax ay = —signum (i k Im n) am a,
a; ax aj am = + signum (i k[ m n) a,
or
Py=ak  piu=—qi,
q;, being the space coordinates of g3. If there did not exist relations of the
form
(p? p2 x) =factor (3’ x) ; (p? P n?) = factor (q>7?)
the physical system would apart from the linearform (¢ @) have other

invariants, independent of this one, as (p2p,2 P), (p2g3)....
We have to control the projective invariant relations between P, p2, g3, a’.

I. We consider the linecomplex (p2 Pn2) and calculating the 15
relations we obtain
2 pik Pi=1qin
cycl i,k, 1
or

(p? Pn?) = I(q? n?) {n?}.

II. The space (p2p;2 x) leads to calculate the 5 forms
Pik Pim + Pit Pmk + Pimpik =1 an
or

(prp?x) =1(a’ x) §x}.

So there is only one invariant I, (a’P) — I2 and the relations between
the “densities” are in geometrical form

I. g3 is the compound of p2 and P.

II. a’ is the focalspace of the planecomplex p2;
P is the focus of the linecomplex g3.

c. In sixdimensional space we can build a G4-complex with
pix=¢ aiaxp (i,k=1,23,4,5)
pre =—psk = ¢’ ax @
We, then, have firstly to consider the linecomplex
(p? p2 ) = (* 7).
From b we see immediately
sikim = (P2 P2 ikim = I Pp = Ipps

Sikte = Pik P16+ Pit psx + pie px1 = pik P1+ p1i P+ prt Pi = 1qikt = Ipmn.
74
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We can therefore sum up all relations given by I, II in
ERaA =1 (@)
Lk = Dik i.k=1,2,3,45,6.

The invariant of the complex is now evidently
P Pp)=12p}, =2I* as Xpl = (P? ¢ + I
Remark I.

If we transform (f;, f2. f3. f4) by a general projective transformation
S of G4

f=S-f
the bracket (02 fg) will be transformed, apart from the transformation

modulus, the determinant of S, in (02fg). The generalised Dirac
equations will then be transformed in

(Zakpr) f=(Zarpr) - SE.

As we remarked already in § 2 the fact that px transform
contragredient to the points in Eg in the orthogonal transformation corres-
ponding to the projective transformation S in G4 we can multiplying at the
left side by an operator T restore the original equations whilst

filxis...x) =Fi(x1, ... %)
The ax are then transformed cogredient to the points of Eg. We will
deduce the explicite form of T.

a. The general projective transformation S of G4 can be represented.
by the symbolical product 2)

S: (a’x) (au’) which reads x;= .:Jai ay Xk.

The determinant of the transformation is D —= (a’b’'c’d’) (afyd),
apart from a constant. The inverse transformation is

S1: (@b cu)(afyx)=(d x)(an)
Indeed
S-18: (@’x)(aad)(au)=1D- (u' x)
as we obtain splitting up a o' in (b'c’d’), (ByJ) and transforming the
a’ into the last bracket.
The transformation of the line coordinates in G can be easily found:
intersecting

@ x)(au)=0  (b'y) (Bu')=0, (xy)i=pik

2) The projective invariants of S are given by the chains, the first of which is the
diagonal sum

h=(aa, h=(@§hb'a, L=(@Ab'yY I a, Ii=(a"pb'y) (I a).
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we have
(@’ x) (b' y) (a p=?) = § (a’ p) (b’ p) (a fn?)
or
pix ={(apB)ik £ (a’b')aupiu=(ap)ix L
where, introducing the sixdimensional coordinates X;, Xj, ..., Xg we have

L={ (@'b)s+ (@ b)a}Xi—i { (@' b)s—(a' b))t X, +
{—(a' b’)u —(a’ bl)zs‘ Xy—if (@' b))y — (@ b')ast X5+
{ (a’ b’)xz -+ (a’ b/)sqz X;+if (al b’)lz — (@ b')u} Xs.

or calculating the X, ..., X¢ from the Dik

% = @Dut@ha 3 _

1 L . (_(1_/3)13_(aﬂ)42 L 3’(3 — faﬂ)14'i2‘ (aﬂ)£ L

' 2

’)‘(4 — (ap2) ';' (aﬂ)ﬂL’ :}"{5 = +i(aﬁ)14;(aﬂ)23 L 3’(6 - _i(_alg)n;(aﬂ)sq L.
As this transformation is an orthogonal transformation in Eg we obtain

the inverse transformation

Xi=20i }k
k

by simply interchanging the rows and columns, apart from a numerical
constant.
On the other hand

Cq—‘l‘CG ’ 0 ’ C3—iC5 ’ Cl—iCZ
o ., C4—1iCs c+icg, —c3—ics
ek ax = : . .
k cstics , ci—ic; ., —c4—icCq , 0
a+tic;, —citics, 0 , —C4—icCg

so we can easily express

(@B)ss 0  —(afs  (af)is

0 (aB)sq (aB)ez (aB)2s
—(af)2s (aB)is —(af); 0

(@B)sz  (af)y4 0 —(aPh2

where [a’, b’]: is the symbolical coefficient of Xi in L.
Multiplying on the right with S we have as e.g.

kz Oikax =[a’,b'];

(aB)34 71 €i — (aB)2g 3 Ci + (aB)23 74 i = (aBy)s ci
cowy (OBY)aar Chyiss
l R (777 PP/ S
o es (@BY) 23 o/ S

Z0ikar - S=[a’, b'];
k
‘ ooy (aBP)an Civens
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from which introducing the a, @’ by using cyclical symmetry is obtained

kZOmak-SzTai

T, — T, —Ty Ty
T— —Ty T, T —Ty Tue= (5.
— T, T, Ty —Tg
T;, —T5 —T; Ts
We have e.g. for i = 1 from
[@ b')13+ (@' b')e2] ch
1=1,@b' N s 4=2,(@" b Nz s 1=3,(a"b"¢')g23 : A =4, (a"b' ) 134

y 2 ’ ’ ’
az€3, —azC4, —a2¢;, az2C

folkak'sz = Ta;.

Remark II.

The relations deduced in § 3 will be seen to correspond to the Pauli-
identities. Recently G. PETIAU 3) has deduced these relations using tensor
calculus, introducing a special metrical tensor. It may be of use to show
the identity of his final results with the relations obtained above.

A. The relation
fag 01 = fag J"
reads in projective notation
o, (pn)? = (q7) (q/) =(q'?j 2"?) =}
or
(q"%j)iki = o, piki -
B. The relation
fupy =, [gijﬁ_g?;ja]
reads in projective notation
(@7)?(aq") (@' x) = o, (g'g) (g’ x) (g') (j=')
which shows because of the fact that (g’ g) is a reducent on (g’ g)2 that
this relation is completely independent of the metrical tensor used!! So it is
superfluous to introduce a metrical tensor for these relations. We have
(@7')* (qq’) (¢’ x) = const w, (g’ g)? (x=') (jn')
and transforming to pointcoordinates we have
(7*q?) (qq}x) ~ (@*#?) (vqix) ~ — (2 q}x) (nq1 @) ~ (¢°q}) (q1 7°x)
or
(ju') =(¢’q)) (e)

3) Revue scientifique 83, 37 (1945).
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which with the contravariant notation of g3 results in
o, (ju') = (p’? pi?u').

Conclusion:
If we represent a physical state by a symbolical special linecomplex
pix=(fg)ix in Gy,

‘where [, g, are functions of six variables xi, the generalised Dirac equations
of motion correspond to the incidence of the point f with the axis of 02 + c2

(*fg) + (*fgd =0 gl

which is of the form
Xag 0 +ocx)-f
k 0 xx

in which the spin matrices ax transform like the point coordinates of the
orthogonal transformations of xi. We can use general projective transform-
ations for the f. The MoLLER meson equations can be obtained by relations
between the fi. The relations between the “densities”

o aae , ¢ ae

can be considered as those of the coordinates of a G4-complex in Eg Py,
which, satisfies the relation

(P?Pia?) = (¢" ¢) (R*'a?)  {a?}
R;'k = Pik~

The Dirac postulate for the equations of motion in an external field
follows automatically from the projective invariance in Gjy.



