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§ 1. Introduction . 

The essential difference between classical physics and quantum physics 
lies in the facto that classical physics specifies a physical state by a finite 
number of coordinates. whereas quantum physics uses in principle an 
infinite number of coordinates. The series of coordinates e.g . 

was represented in quantum physics (using some system of orthoganal 
functions) by a function of an auxiliary variabIe ~ . the wave functian . 
Transition ta a different ordertype of the coordinates gives us another 
representation of the same state: e.g. the ordertype w 2 

specifies the states by means of two functions of one variabIe. An ordertype 
w n • x would specify the states by means of x functians of n variables. 
So neither the number of functions. nor the number of variables used is of 
fundamental importance. 

On the ather hand the structure of Dirac equations. being farmally that 
of the incidence of a point and a line in threedimensional projective space 
G 4 • suggests from the mathematical point of view the use of the theory of 
projective invariants. of complex symbols rather than a tensor calculus using 
special metrical tensors. Also the Poisson brackets of classical physics 
correspond to algebraical expressions in quantum mechanics! In the 
follawing we show that indeed the formalism of a geometry of second 
order. that of line geometry in G 4 is extremely simple used far quantum­
physical purposes. 

§ 2. Generalisation of Dirac equatiöns. 

a . A linecomplex q2 in G 4 : 

q12 n]1 + q13 n12 + ... = O. 

can be represented symbolically by (q 2 ]l2 ) = 0 and has only one invariant 

(q2 qi) = Q (q2) = q12 q31 + q13 q12 + q11 q23' 

from which. as is weIl known. fallows an isomorphism of the projective 
group in G 4 and the sexternary group leaving invariant Q(q2). The relation 
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can be transformed by one oE FELIX KLEIN's substitutions in the sum of 
six squares e.g. 

Q1+ i Q6=ql2 Q,-iQ2=q'3' -Ql-iQs=q'1 

Q1- i Q6=q34 • Q, +iQ2=q12 • - Q3+ i QS=q23. 

With these coordinates corresponds a differentialoperator in si x­
dimensional Euclidean space Es: 

~~+i~~=~ + .::.? =0;2= - 0;, =031 =- 013' etc. 
UX1 uI.%'6 

which allows to introduce an alternating differentialoperator of order Y2 in 
threedimensional space described by complexsymbols transforming 
cogredient to the points. We have then immediately therelations between 
the sixdimensionallinear form (Ll/Q) and the quarternary bracket (02 q2) 

(~' Q) = 2 div Q = (02q2) 

(02 oi) = ,16 _ Laplaceoperator. 

An alternating 2-tensor in Es corresponds with a pencilcomplex in G4 ; 

a symmetrical 2-tensor with aquadratic linecomplex. 
Rot P' can e.g. be represented by 

(~' n) (nP') in E6' nj nk = - nk nj. 

and pushing down into G 4 we obtain 

(02 n 2) (e 2 p2) • n 2 . e 2 = - e2 . n2. 

The components of Rot P' are thus expressed by linear combinations 
of the 15 coefficients of a pencilcomplex in G 4 • 

The symbolical methods for the study oE these forms have allready been 
discussed by R. WEITZENBÖCK, Komplexsymbolik (1908). 

b. The necessary and sufficient condition for the possibility of 
splitting up 

qjk = (fg)lk = 1 ~ :: I· 
in which [. 9 are transEorming cogredient to the points of G 4 is, that the 
linecomplex q2 be a special linecomplex i.e. (q2 q12) = O. 

The Moebius correlation with regard to a general linecomplex is given 
by (q2 xy) = O. There exist points with an undetermined conjugated plane 
only Eor special complexes and for the points x, on the axis of the complex, 
holds 

(q2 xy) = 0 I y I. 
The equations of motion of the free Dirac electrons are given by the 

condition that f lies on the axis of the speciallinecomplex 02
• 

The conditions 
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031 f2 + 012 f3 + 023 f1 = 0 

031 fl + 013 f1 + 011 f3 = 0 

021 f1 + 012 fl + 014 f2 = 0 

012 f3 + 023 fl + 031 f2 = 0 

Introducing the operators 

and the matrices 

000 1 o 0 o 1 

001 0 00-1 0 
°1= o 1 0 0 

°2=-i o 1 o 0 

100 0 -1 0 o 0 

1 0 0 0 00-1 0 

o 1 0 0 o 0 0-1 
°1= o 0-1 0 

0s= i 
1 0 0 0 

o 0 0-1 o 1 0 0 

this system reads 

o 
o 

010 

00-1 

'0 0 0 

0-10 0 

1 000 

o 1 0 0 

o 0 1 0 

000 1 

(1) 

A quantity ti ~ 0 can only exist if the symbolical invariant of the 
operator 02 vanishes i.e. 

(0 2 0D . f- 116 • f= o. . . . . .. (2) 

From the fact that the pk transform contragredient to the points of E6 
and from the invariance of equation (1) it follows that the Ok must 
transform cogredient to the points of E6' (see also Remark I). 

To a physical state we make correspond a special symbolicallinecomplex. 
The equations (1), (2) then contain a generalisation of the Dirac equations. 
of motion of the free electron, and are easily identified with those if we, 
e.g., specialising , put 

fi = eA x, ft (XI' X2' X3 ' X6) • 

c. General equations of motion for non-free particles lie before hand: 
they can be obtained from the, only possible, projective invariant form 

(02 fg) + (c2 fg) = 0 Igl· . . . .. . . (3} 

IE we put, specialising, 

Ofi 
~ = (ma c-A) f; 
uX1 

Ofi - St:, 
OXs - 1I 
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and apart from numerical constants 

C = (Qx. Qy. Qz. A. S. itp) 

we obtain the weIl known Dirac equations for the electrons in an arbitrary 
field. The postulate of Dirac 

Pk- Pk + Ck 

corresponds to the postulate of projective invariance in G 4 • 

That the corresponding wave equation of the general equations of motion 
contains 15 additional spin terms is evident from the multiplication into 

(al PI + a2 P2 + a3 P3 + a4 P4 + as Ps - a6 P6) of (3). 

d. We can also specialise the equations (3) by supposing arelation 
between the fi. which can be interpreted as a structu're of the partiele. If 
e.g. we put 

~fn = I Ank fk 
UX6 k 

the equation (3) becomes with 5 variables 

Cu. V = 1. 2. 3. 4. 5) 

which are MllJlLers meson equations 1). The matrix IIAII can be a general 
matrix; without a relation between the fl we cannot obtain terms af' a~ in 
an invariant way as a matrix that anticommutes with al. a2. a3. a4. a5 must 
vanish. 

§ 3. Densities in quantum mechanics. 

a. Let us consider the quantities 
. , 

}k = tp ak tp. 

the sixth component is apart Erom a constant the quarternary linear form 
I = (tp' q;). As is easily controlled we have 

6 6 
I jf = I (q;' ak q;)2 = O. 

k=1 k=1 

The vector j k in E6 is an isotrope vector. 

b. Between the ak. k = 1. 2. 3. 4. 5 we have the relations 

IE now we form the quantities 

Pk = tp' ak tp ; Pik = q;' ai ak q; ; qlk1 = q;' al ak a1 q; ; a~ = q;' aj ak a 1a m q; 

1) C. M0LLER. D. Danske Vid. Selsk. math.-fys. Medd.. 18 (1941) . 
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we can represent P, p2 • q3. a' by a point P, a planecomplex p2• a 
linecomplex q3 and a G4 in G5 • 

or 

Because of the commutationrules between the ak we have 

ai ak al = - signum (i klm n) a m a n 

ai ak al a m = + signum (i klm n) an 

, 
Pik=-qik. 

q~k being the space coordinates of q3. IE there did not exist relations of the 
form 

(p: pi x) = factor (a' x) 

the physical system would apart from the linearform (cp' cp) have other 
invariants. independent of th is one. as (P 2P12 P). (p2q3) .... 
We have to con trol the projective invariant relations between P, p 2 , q3. a'. 

I. We consider the linecomplex (p2 p ;n2) and calculating the 15 
relations we obtain 

or 

or 

I Pik PI = / qikl 
cycl i . k, I 

11. The space (P2P1 2 x) leads to calculate the 5 forms 

Pik plm + Pil pmk + pim Pik = I a~ 

So there is only one invariant / , (a'P) = /2 and the relations between 
the .. den si ties" are in geometrical form 

I. q3 is the compound of p2 and P. 

11. a' is the focalspace of the planecomplex p2 ; 

P is the focus of the linecomplex q 3. 

c. In sixdimensional space we can build a G 4-complex with 

(i. k = 1. 2. 3. 4. 5) 
I 

Pk6 = - P6k = cp ak cp 

We. then. have firstly to consider the linecomplex 

(p2 p~ ;n2) = (S1 ;n2). 

From b we see immediately 

Siklm = (p 2 p~)iklm = I Pn = I pn6 

Sikl6 = Pik PI6 + Pil P6k + Pit Pkl = Pik PI + Pli P k + Pkl Pi = I qlkl = I pmn. 

74 



1140 

We can therefore sum up all relations given by I. 11 in 

(p2 p~ 3(2) == ] (ri 3(2) (3(2) 

i. k = 1.2.3 .... 5.6. 

The invariant of the complex is now evidently 

(p2 m p~) ---:- ] I P~k - 2 J3 as E P~k = (p2 q') + ]2. 

Remark I. 

H we transform (f1' f2' f3' f4) by a general projective transformation 
8 of G 4 

t=8.{ 

the bracket (c}2 f g) will be transformed, apart from the transformation 

modulus. the determinant of 8. in (a 2 1g). The generalised Dirac 
equations will then be transformed in 

(I ak iJk) t = (I ak iJk) . 8 f. 
As we remarked already in § 2 the fact that pk transform 

contragredient to the points in E6 in the orthogonal transformation corres­
ponding to the projective transformation 8 in G 4 we can multiplying at the 
left side by an operator T restore the original equations whilst 

{;(XI' ••• X6) = ti (XI • ••• X6). 

The Uk are then transformed cogredient to the points of E6' We wiII 
deduce the explicite form of T. 

a. The general projective transformation 8 of G 4 can be represented 
by the symbolical product 2) 

8: (a' x) (a u') which reads Xi = I ai ale Xk. 
k 

The determinant of the transformation is D = (a' b' c' d' ) (a iJ 'Y ~). 
apart from a constant. The inverse transformation is 

S-I : (a' b' c' u') (a iJ 'Y x) = (a' x) (a u') 
Indeed 

8-1 S: (a' x) (a a') (a u') = -t D . (u' x) 

as we obtain splitting up a a' in (b' c' d'), (iJ 'Y ~) and transforming the 
a' into the last bracket. 

The transformation of the line coordinates in G can be easily found: 
intersecting 

(a' x) (a u') = 0 (b' y) (iJ u') = O. (x Y)ik = Pik 

2) The projective invariants of S are given by the chains, the first of which is the: 
diagonal sum 

11 = (a' a). 12 = (a' {J) (b' a). 13 = (a' {f) (b' y) (c' a). 11 = (a' {J) (b' y) (c' c5)(d' al . 
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we have 

(a' x) (b' y) (a P n2) = t (a' p) (b' p) (a P n2) 

or 

Pik = 1 (aP)ik I (a' b')A!' pA!, = (a{J)ik L 

where. introducing the sixdimensional coordinates Xl' X 2 • •••• X 6 we have 

L = 1 (a' b')13 + (a' b'),,21 XI - i 1 (a' b')I] - (a' b'),,21 X 2 + 

I-(a' b')." - (a' b'b I X, - i I (a' b')]i - (a' b'),] I X s + 

I (a' b')12 + (a' b'h" I X 3 + i I (a' b')12 - (a' b'h" I X 6 • 

or calculating the X l' ...• X 6 from the lJik 

X
- _(a{J)I3+(a{J)"2L X~ - .(a{J)I3-(a{J)"2L X~ __ ~a{J) ... +(a{Jh3L 

1- 2 • 2- 1 2 • 3- 2 

X - (aPd + (a{J),"L X- - + .(ap) ... -(a{J),3L X~ __ .(a{J)12-(a{Jh"L 
,,- 2 • 5- 1 2 • 6- I 2 . 

As this transformation is an orthogonal transformation in EG we obtain 
the inverse transformation 

Xi=IOikXk 
k 

by simply interchanging the rows and columns. apart from a numerical 
constant. 

On the other hand 

C,,- iC6 • 0 C3- icS • CI- ic2 

0 C,,- iC6 • Cl +iC2 • -C3 - ics 
ICk ak= 
k C3+ icS CI- ic2 ' -C,,- iC6 • 0 

Cl + iC2 -C3+ icS , 0 -C,,- iC6 

so we can easily express 

(aph" 0 - (a{J) ... (aP) 13 

0 (aP)]" (a{J)'Il (aph3 
I Olk ak = [a', b']i 

- (aPh3 (aP)13 - (aP)12 0 k 

(aP)n (aP)Ji 0 - (aP) 12 

where [a', b'] i is the symbolical coefficient of Xi in L. 
Multiplying on the right with S we have as e.g. 

(aph" YI ci - (aPh" Y3 ci + (aPh3 Y4 ci = (aPY),41 ci 

IO ik Uk' S= [a', b']i 
k 

I

· .. ,(aPr)'". c~, .. . 

· .. , (aPY)342 c~, .. . 

· .. ,(aPY)231 c~, •.. . 
CA, . .• · .. , (aPr)m 
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from which introducing the a. a' by using cyclical symmetry is obtained 

I Olk aic ' S = T ai 
k 

T22 -T21 -T24 T23 

T= 
-Til Til TH -TB 

-T42 T41 TH -TH 

T32 -T31 -TH T33 

We have e.g. Eor i = 1 Erom 

[(a' b')\3 + (a' b')42] cJ. 
1 = 1. (a' b' c')m ; 1 = 2. (a' b' C')132 ; 1 = 3. (a' b' c')423 ; 1 = 4. (a' b' C')U4 

-a2 c4' -a2 cI' a2c211_ T 
- al' ~ 0 S -Ij a2 Cl • .. Ikak' -

k , , , 

Remark 11. 

The relations deduced in § 3 will be seen to correspond to the Pauli­
identities. Recently G. PETIAU 3) has deduced these relations using tensor 
calculus. introducing a special metrical tensor. It may be of use to show 
the identity oE his Einal results with the relations obtained above. 

A. The relation 

reads in projective notation 

rol (p n')2 = (q n')2 (qj') = (q' 2 j' n' 2) I n I 
or 

B. The relation 

f"f'r fr, = rol [g! j j9 - g~jcz] 

reads in projective notation 

(qn')2 (qq') (q' x) - rol (g' g) (g' x) (gn') (jn') 

which shows because oE the Eact that (g' g) is a reducent on (g' g) 2 that 
th is relation is completely independent oE the mdrical tensor used!! So it is 
superfluous to introduce a metrical tensor Eor these relations. We have 

(q n')2 (q q') (q' x) = const OOI (g' g)2 (xn') (j n') 

and transEorming to pointcoordinates we have 

(n3 q2) (q q~ x) - (q3 n2) (nq~ x) - - (n2 q~ x) (n ql q3) - (q3 q~) (ql n3 x) 

or 

3) Revue scientifique 83. 37 (1945) . 
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which with the contra variant notation of q3 results in 

Conclusion: 

( . ') - ( 'l '2 ') 
COl JU = P PI U • 

If we represent a physical state by a symbolical special linecomplex 

Pik = (fg)ik in G1 • 

wh ere {, g, are functions of six variables Xi, the generalised Dirac equations 
of motion correspond to the incidence of the point [ with the axis of 02 + c2 

which is of the form 

f ak (à :k + Ck) . f 
in which the spin matrices ak transform like the point coordinates of the 
orthogonal transformations of Xi. We can use genera I projective transform~ 
ations for the f. The M0LLER meson equations can be obtained by relations 
between the [i. The relations between the "densities" 

cp' ai ak cp • cp' ak cp 

can be considered as those of the coordinates of a G 4-complex in E6 Pik. 
which, satisEies the relation 

(P2 P~ 1(2) _ (cp' cp) (R11(2) 11(21 

Rik =Piko 

The Dirac postulate Eor the equations of motion in an external field 
follows automatically fr om the projective invariance in G 4• 


