Mathematics. - "Euler's constant and natural numbers". By Prof. J. C. Kluyver.
(Communicated at the meeting of February 23, 1924).
The first representation of Euisr's constant C as the limit of a rational expression of natural numbers is due to Vacca, who in 1910 arrived at the remarkable result

$$
\begin{aligned}
& C=\left(\frac{1}{2}-\frac{1}{3}\right)+2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}\right)+ \\
& +3\left(\frac{1}{8}-\frac{1}{9}+\frac{1}{10}-\ldots-\frac{1}{15}\right)+4\left(\frac{1}{16}-\frac{1}{17}+\frac{1}{18}-\ldots-\frac{1}{31}\right)+.
\end{aligned}
$$

The convergence of this series is not disturbed, if we remove the brackets and write

$$
C=\sum_{2}^{\infty} \frac{(-1)^{k}\left[{ }^{2} \log k\right]}{k}
$$

where $[x]$ stands for the integer part of the number x. At first sight we might think that the number 2 as the base of the logarithms plays a predominant part in the construction of the series, but such is not the case. In fact, selecting an arbitrary integer a and putting β_{k} equal to $a-1$ or to -1 , according as k is, or is not a multiple of a, we have in quite the same way

$$
C=\sum_{a}^{\infty} \frac{\beta_{k}[a \log k]}{k}
$$

From these expansions it is evident that C is intimately connected with the natural numbers, and the consideration of another expression of C, that I am going to deduce, suggests anew the existence of this connexion. From the known formula
$\frac{\Gamma^{\prime}}{\boldsymbol{\Gamma}}(1+a)+C=\int_{0}^{1} \frac{1-x^{a}}{1-x} d x=\int_{0}^{1} \frac{1-(1-y)^{a}}{y} d y=\int_{0}^{1} \frac{d y}{y} \sum_{1}^{\infty}(-1)^{h-1} a_{h} y^{h}$
we obtain at once by integrating with respect to a betweer the limits 0 and 1

$$
C=\sum_{1}^{\infty} \frac{\alpha_{k}}{h}
$$

where the coefficients a_{h} are determined by the equation
$\alpha_{h}=(-1)^{h-1} \int_{0}^{1} a_{h} d a=+\frac{1}{h} \int_{0}^{1} a\left(1-\frac{a}{1}\right)\left(1-\frac{a}{2}\right)\left(1-\frac{a}{3}\right) \ldots\left(1-\frac{a}{h-1}\right) d a$.
Obviously the numbers α_{h} are positive and rational and it is seen that the sequence $\left(a_{h}\right)$ is decreasing to the limit zero. In order to evaluate α_{h}, we observe that the equation

$$
\int_{0}^{1}(1-y)^{a} d a=\frac{y}{\log \frac{1}{1-y}}=1-\sum_{1}^{\infty} \alpha_{h} y^{h}
$$

leads to the identity

$$
1=\left(1-\sum_{1}^{\infty} \alpha_{h} y^{h}\right) \sum_{1}^{\infty} \frac{y^{h-1}}{h}
$$

Hence the coefficients α_{h} are found from the equations

$$
\begin{aligned}
& \frac{1}{2}=\frac{\alpha_{1}}{1} \\
& \frac{1}{3}=\frac{\alpha_{1}}{2}+\frac{\alpha_{3}}{1} \\
& \frac{1}{4}=\frac{\alpha_{1}}{3}+\frac{\alpha_{2}}{2}+\frac{\alpha_{3}}{1} \\
& \frac{1}{5}=\frac{\alpha_{1}}{4}+\frac{\alpha_{3}}{3}+\frac{\alpha_{3}}{2}+\frac{\alpha_{4}}{1}
\end{aligned}
$$

As the sequence $\left(\alpha_{h}\right)$ is decreasing, we must have

$$
\alpha_{h}<\frac{1}{(h+1)\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{h}\right)}<\frac{1}{h \log h},
$$

therefore we conclude that the terms of the somewhat irregular expansion

$$
C=\sum_{1}^{\infty} \frac{\alpha_{h}}{h}=\frac{1}{2}+\frac{1}{24}+\frac{1}{72}+\frac{19}{2880}+\frac{3}{800}+\frac{863}{362880}+\frac{275}{169344}+\ldots
$$

are less than the corresponding terms of the series $\sum_{2}^{\infty} \frac{1}{h^{2} i o g h}$. Its convergence may be slow, but it converges more rapidly than Vacca's expansion.

The above resnlt can be put into another form. Writing

$$
C=\operatorname{Lim}_{h=\infty}\left(\frac{\alpha_{1}}{1}+\frac{\alpha_{2}}{2}+\frac{\alpha_{2}}{3}+\ldots+\frac{\alpha_{h}}{h}\right)
$$

and joining this equation to the equations satisfied by the coefficients α_{h}, we obtain by solving for C

$$
C=\cdots \operatorname{Lim}_{h=\infty}\left|\begin{array}{cccccc}
0 & \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \ldots & \frac{1}{h} \\
\frac{1}{2} & 1 & 1 & 0 & 0 & \ldots \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{1} & 0 & \ldots & 0 \\
\frac{1}{4} & 1 & \frac{1}{2} & \frac{1}{1} & \ldots & 0 \\
\frac{1}{4} & 3 & \frac{1}{2} & \frac{1}{h} & \frac{1}{h-1} & \ldots \\
\cdots-2 & \frac{1}{1}
\end{array}\right|
$$

and thus we have again deduced a rational expression of the natural numbers, that converges to the mysterious constant C.

For purposes of numerical computation these expansions of C are not convenient, and a more serviceable relation is obtained as follows.

If we integrate with respect to a between the limits 0 and 1 both sides of the equation
$\frac{\boldsymbol{\Gamma}^{\prime}}{\boldsymbol{\Gamma}}(a+\mu+1)+C=\int_{0}^{1} \frac{d y}{y}\left\{1-(1-y)^{\mu}\right\}+\int_{0}^{1} d y \sum_{1}^{\infty}(-1)^{h-1} a_{k} y^{h-1}(1-y)^{\mu}$, we will find
$C=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{\mu}\right)-\log (\mu+1)+\Gamma(1+\mu) \sum_{1}^{\infty} \frac{\alpha_{h}}{h(h+1)(h+2) \ldots(h+\mu)}$.
Now in this expansion an irrational term occurs, but taking for instance $\mu=5$, this formula gives the numerical value of C with tolerable accuracy by using only the first six terms of the series at the righthandside.

