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from which 7 can be found. The sum in the second member can
be put in a way analogous to that of § 3, into a form identical
with (18). Our result does not agree with that of CREHORE (compare
p. 214). In our solution the retardation of phase is the same for all
vibrations, which is not the case in CrREHORE’s paper.

It may be observed that in our problem we have to do with a
system of an infinite number of variables in which a dissipation-
function couples the variables; for eliminating J from (12) and (13),
we obtain

£ cos pt = RI cos (pt + 8) —

lsin(pt—l—ﬁ)El2
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The dissipation F takes the form

wal>%)
F=——|=2>}.
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Gromingen, Sept. 1914.

Physics. — “Accidental deviations of density and opalescence at
the critical point of a single substance.” By Dr. L. S. OrRNSTEIN
and F. Zgrnike. (Communicated by Prof. H. A. Lorentz.)

(Communicated in the meeting of September 26, 1914).

1. The accidental deviations for a single substance as well as
for mixtures have been treated by Smorvcrowskr') and ENsTeIN *)
with the aid of Borrzmasn’s principle; by OrnsteiN *) with the aid
of statistical mechanics. It appears as if the considerations used and
the results obtained remain valid in the critical point. SMoLUCHOWSKI
has applied the formula found for the probability of a deviation
to the critical point itself, and has found for the average deviation
of density

He has used this formula to express in terms of the mean density

Y M. Smorucaowskr, Theorie Cinétique de 1'opalescence. Bull. Crac 1907 p. 1057.
Ann. der Phys. Bd. 25, 1908, p. 205. Phil. Mag. 1912. On opalescence of gases in
the critical state. W. H. Kresom, Ann. der Pbys. 1911 p. 591.

2) A. Ewvstewy. Ann. der Phys. Bd. 83, 1910, p. 1276,

8) OrnstEN, These Proc., 15, p. b4 (1912).
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the accidental deviations in a cube, the side of which is equal to
the wave-length of the light used in the experiments on opalescence.

Now there is a difficulty with this formula, to which, indeed,
lead also the considerations of EiNsTEIN as well as statistical mecha-
nics when worked out in an analogous way for the critical point.
In all these cases the mutual independence of the elements of
volume is presupposed. Now, let there be given for the element of

volume » the mean square of deviation viz. (n—n)*. Consider P
equal contiguous elements of volume v, 7, ete.,, in which n,,n,, ete.
particles are situated, n—,,n: ete. indicating the mean values of these
numbers.

Hence in the volume V =—wv,+v,4... there are N=n,-+n,+..

particles.
For the mean value of V we have
subsequently

(N—DNy ={n, —m) + (n, — ) + .. P=p@m—n)
since, the elements of volume being supposed independent of each
other, the means of the double products vaniskh. So we tind for the
deviation of density that the product of volume and mean square
of deviation must be a constant.

Indeed the above-mentioned formula of probability for the devia-
tions of density is 80 far inexact, as the terms of higher order
appearing in it aré "af variance with the mutual independence of
the elements of volume, which underlies the deduction of the fre-
quency-law. In fact this deduction is only valid for such large elements
of volume that these terms are no more of any influence. It is
easily seen that this limit, above which the formula is valid, in-
creases indefinitely in approaching the critical point. This explains
also mathematically the wrong dependence on ¢ found for the mean
deviation in the critical point itself.

Now one could try to deduce the formula to a farther approxi-
mation. However, also the supposition of independence of the ele-
ments of volume is inexact in case these are small, and it would
thus be impossible to ascertain how far the formula would yet differ
from reality.?)

1} A deduction of the inegualilies in which the inexact terms of higher order
do not at all appear, is given by ZERWIKE in his [thesis, which will shortly
appear. As this deduction too uses the independence alluded to, the objection men-
tioned holds here also.

The remark of EmnsTEIN (Le. p. 1285) that there would be no principal difficulty

+
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2. Now, in order to avoid the difficnlties mentioned, it is neeessary
to take into account the influence of deviatious in the one element
on the state in another. Let us divide the system into infinitely
small elements of volume. A molecule is considered to lie in the
element when its centre is situated in it. We consider an element
dv, in the origin of coordinates. Around this element we imagine
the sphere of attraction i.e. the region in which a molecule must
lie when it is to have any influence on the state in dv,. We determine
the numbers of moiecules for the elements of the sphere of attract-
lon in giving the deviations v ,», etc. from the mean number of
molecules per unit of volume. ‘

We suppose the mean value of the density »,, when », etc. are
given, to be a linear function of the deviations », etc., i.e. we put’)

v, =C 4 fwdv, + fivgdeg +. . . . . . (1)

Taking the mean value of » over all possible values of »,, it

appears immediately that ' == 0, hence '

1_>0 =prde, + fvde, 0 0 0 - 0 0L (2)
The coefficients f denote the coupling of the elements, they only
depend on the relative coordinates, i.e. here, on «y z. That the in-
fluence of an element, when the density is given, must be propor-
tional to its size is immediately seen by considering the influence
of uniting two elements in (2).
We shall now write the sum (2) as an integral. For the density.
in the element dvdy d: we put v,.; further, we can dispose of N
in such a way that f(0,0,0) = 0. Then for (2) we get

+o
;0 :fﬂ Yoy f (@ Y, 2) dadyde . . . . . (3)

The integration may be extended here from — oo to ~+ @, f
being zero outside the sphere of action®).

in extending his deduction to a farther approximation, is therefore mistaken. On
the contrary, the consideration of higher terms so long as the independence is
made use of, will not lead to anything.

1) Putling things more generally, we could write a series in'P, elc. instead of
(1). However, for the purpose we have in view, (1) is sufficient.

% The quantity » can only take the values 1—adv and —adv, hence v is a
discontinuous function of the coordinates. One might be inclined therefore, to continue
‘writing a sum instead of the integral (3) and to solve the problem dealt with in
the text with the aid of this sum. In doing so one gets sum-formulae which are
wholly analogous to the integrals we used. However, we prefer introducing the
integral, as the discontinuous function v has entirely disappeared from formula (6)
only the function g appearing -in - it, which is continuous when the function [ is
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On the contrary, if », is given, » has another value for the
surrounding elements. than if », = 0. Be in the element at 2y
Vayr = 9@, Yy 2, vedoy) . . . o o L (4)
and let us try fto determine the funetion g, the function f being -
given.
Now take the mean of formula (3), a fixed value », being ascribed
to v in a certain element da, dy, dz,.
In 2,9,z ac_(i(')rding to (4)
Vyye = 9@~y y—y,, 20—z, v dedyds) . . . . (5)
For the first member we therefore get
Vo = 91y Y1s 24y vdw,dy,dz))
as f and ¢ do not depend on the direction of the line joining the
elements. In the integral, (5) cannot be applied to the element
dr, dy, dz,; however, this element gives
¥, f(xﬂ Y11 21) ‘i"vldytd"”l
Further taking ¢ (0,0,0) zero, as it may arbitrarily be chosen,
we get

4 @
g(a‘,l’yk"zl’ﬁd‘rldyldzl) :ffﬁ(m“”v?/”yl 7'2—_21’vld"vldyldzl)f(myz) dwdydz—f—

+ v, f (29 ,) dr,dy, dz,.
This is true for all values of », dz, dy, dz,, hence ¢ must contain
this quantity as a factor, and we obtain

“+ o
(2 1:Y,+2,) “‘ﬂ:ﬁ/’(”"_'zﬂ YU z““”l)f("’i’/") dedyde = flz,yy,.2,)
—0

Now put 2—z, = §&, y—y, =, 2—=z, = 2§, and omit the index,
then for g we get the integral equation

“+®
o) — [ [ [ 1018 0 =49 o) dzindt = fage). . ©)

For g we have
Yoy = glayz) vy dv, . . . . . . . (7)
from which it ‘appears immediately that

vxyzvo:g(wyz);:"dvo R ()

continuous. The integral-formulae obtained in this way are easier to deal with
mathematically, and besides the integral equation (6) has been solved, this being
not so easily found from the analogous sum-formula.
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Now let us consider more closely the coefficient of ¢ in (8).

Let @ molecules be present in the unit of volume, then the mean
number of molecules in dv is equal to «adv. If we take dv very small,
there may be no or one molecule in it. The chance for one molecule

1
is, therefore, ndv; for none 1 — adv. In the first case p=—— a,
T v .
in the latter it is — a, thus P e
— a
= — — a?
dv
or
v—’dv:a.........(g)

Introducing this into (8), we find for the two elements w.y,z; and
TR TR

r,pT:a‘q(mg;wr,yg—yr,zg—zf) e 1Y)

* This result can be used to indicate the values of(N—Nf = AN
for any volume.
We have

AN = {rdv

AN = ff dr, dv- + f f v: des dy, dz, des dy. dz.
Lg%

K
trom which applying (9) and (10)

\
AN = aV 4+ a.ffq (s — &=y Yo —Ury 2a—22) ds dye d2; de- dy- dz-.
VV'

This holds for every size and form of V. Elaborating it for a
cube . with side / the dependence on V' is seen more clearly. Putting
2 —a: =28, Ya— Y- =1, 2, — 2= — &, and integrating only for §u§
positive, by which '/; of the integral in question is found then, we get

{11 Il .
AN = N+ Saff ﬁ 9] f f das dys dz, & A ?f
vou Ent
{11
=T o [ [e—thstut9) + 1 @nt o8 — ) g B
000 :

Hence




— +1! +1
LNE ~ ) s
,_§- =14 fﬂg (vy2) dadyds — 3 ﬂf[ g dadydz
1V (_m ; . g
i +1
aCE Naars
+ 3]]] w g da dy de ——Jﬂ ;[;._%v g da dydz.
= iy

Every integral in this formula is always smaller than the prece-
ding one. If / is large with respect to the distance for which ¢ has
an appreciable value, there remains only the first integral. For
any great volume we have

I -+
~:~~~:1+ﬂfgdwdyd: .. . o . (1D
N

—

3. In trying to determine the funection f by means of statistical
mechaniecs, we meet with difficulties. Still something may be found
about the guantities r- by applying the statistic-mechanical method
to our problem. Indeed statistical mechanics permit to introduce a
mutual action of the elements of volume.

We will avail ourselves of a canonical ensemble. We suppose the
molecules to be spherical and rigid, and to attract each other for
distances which are great with respect to their size. Elements small
with respect to the sphere of attraction therefore may still contain a
great number of molecules. But now we drop the supposition of the
sphere of attraction being homogeneously filled for all systems (or
at least for by far the greater part of them)?).

In calculating the number of the various distributions, we
must, for the potential energy of attraction, take into account the
mutual action of the elements; whereas, in calculating the exclusion
of definite configurations of centres, we may neglect the fact that
there is some correlation on the borders of the elements. For the
dimensions of the elements have been supposed large with respect
to the molecular diameter.

The mutual potential energy of the » -+ t molecules contained in
an element dv, will be represented by

S Chul
dv
in this formula v represents the number of molecules contained in
the volume dv for the most frequent system. In this system the
distribution is homogeneous.

) Cf OmnstelN, Toepassing der Statistische mechanica van Gises op molekulair-
theoretische vraagstukken. Diss. Leiden 1908, p. 43 and p. 110.

)
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Of course, the potential energies will not strictly be the same for
different configurations within the elements, but we shall neglect this
(‘()llll)ll(d“Oll Further we will represent the mutual potential energy
for the two elements 6 and o by

— @ T T) g
dv
all elements of volume being put equal.

For the total potential energy we find, in this way

— e X () 2 (0 ST s
Zelr (r ) ' (5 P
For the frequency & of a svstem with the given distribution of
molecules we find
1 «
0t . s =)= (b tg.
i (@, d V)1 e (o, d Ve o= g .
(r+r )/(r+r Y.
Here « 15 the function defined in the quoted dissertation on p. 48.

Supposing /\< r and developing. we gef.

,1 ﬁa... TS S 1T — i 4 l f{ a® ilflg) AT .2+

=0 w' a7 e~ 26 v v da da Gdv
Y% 4, v, 4 12

A A
* o (12)

The number of molecules per unit of volume represented there
by n, has been put o in this paper. The function w and the faculties
are developed in the same way as in the quoted dissertation. The
double sum in the exponent gives the forms X'.v 2 1.7, and 21, 2vg,,.
These forms are identical, as they consist of the same terms differ-
ently arranged, further 2¢. is the same for all molecules and
2, = 0, consequently both sams vanish.

The constant C contains the factor Ne¥/© along with quantities which
do not depend on the volume by summing up (12) over all possible

values of ¢ (and taking into account that ='r, = 0) we get A, the
total number of systems in the ensemble. So we find
v n?
VA

the quantity A being the discriminant of the quadratic form in the
exponent.

; N 0
When we write 2 ¢y, = a, we find for the pressure p = _

Ov
53

Proceedings Royal Acad. Amsterdam. Vol. XVIIL

i
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p n dlogw o »°

—I e e — T

e T av 20 V?*
L—'l: being very small with respect to the other factors, we may
neglect its influence in w?'). The equnation of state has the same
form as vaN DEr Waars equation. However, the correlation is sensible

in -the accidental deviation; for it changes the value of r*; and
rr., which vanish if the correlation is neglected, obtain values
deviating from zero.

Denoting by 4., and by 4. the minors of the discriminant,
we have

= O k—1)
.= — (h—
N

Lot gy »
7 =17

where L is the number of elements into which the volume is divided.

T,T: ==

) dp )
The condition A =0 is equivalent to the condition ,{i = 0. For
({34

if we write down the determinant in some arrangement, and if we
add all rows to the first row, we get a determinant of which all
terms of the first row have the form

1 1d ,dyo 1

i~y

-7

P +17daa da + Odv

Strictly speaking, this is not true for some terms at the end of the row,
but as we have neglected the action on the borders, we may neglect
this fact too. In reality our considerations are only true for an infini-
tely great volume, where this difficulty disappears, as A is then an
infinite determinant.

Now if
1 1 . dfe 1
—_——_t—a L  —— =0
sy e Tem= ¥
then A = 0.
Orif A=0
d ,dfw a
l——ad* 2 — + —a= 0
w4 Te

dv
which therefore agrees with f =0.
v

B

) Cf L c. p. 129. , o
%) Cf. ORNSTEIN, Accidental deviations in mixtures. These Proceedings 18,
p. b4 (1912). o ' ;
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The quantities ,r, etc. here found are related to those mentioned
above. And though a statistical deduction of the function f enter-
ing into details may lead to difficulties, yet it is clear that
statistical mechanics yield a correlation analogous to that expressed
in g.

If we should wish to continue the deduetion of the conditions of
the critical point, we should have to use higher powers of z,, which
can be done without difficulty; we then find for the second condition
dZZ)

dv®

If we drop the supposition that the sphere of attraction is large,
we can use the function ¢, defined in the quoted dissertation. In
order to take into account the correlation, we must suppose the

integrals
-— &
j; q/@ dr, . .dez, v.= 9 (ny)

defining ¢, to depend on n; for the element in question and also
on the numbers of molecules in the surrounding elements. Therefore,
in general, the numbers of molecules of all elements w 111 appear in

09,

Ty

9n, , but the influence of distant elements 15 so small that

can be put zero.

By considerations analogous to those used in the quoted disserta-
tion, we can show that 9 (n.) has the form

Ny 7y
V. (w Dy D' nx")

in which n, n, denote the densities (molecular), in the elements
with which V', is in mutual action. The values of all n. are equal
for the most frequent system.

Now we find for &

§=CVr(wn,nnn...\ e?r

where P is a quadratic form in the deviations for the various
elements, -containing squares as well as double products. The form
might be easily indicated, but we will omit it, as it is only our
purpose to show how in general the statistic-mechanical considera-
tions, changed in the sense of a correlation of elements of volume,
lead to formulae analogous to those given in § 2. Here too the
mean square of deviation and the means of double products are
xepreqented by quotlents of minors of the discriminant of P and

d
thls guantity itself. Here (oo for EP__O the diseriminant vanishes.
v

53*

-10 -
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4. The above considerations can be applied in calculating the
critical opalescence. For that purpose we use the simple method
indicated by Lorkxt2'), which consists in superposing the light-
vectors caused by the influence of every individual molecule in a
point at great distance.

Consider in the substance through which a beam of light passes,
a volume 7 great with respect to the wave-length, and take a distant
point P, the direction VP forming an angle ¢ with the incident
ray.

All molecules lying in one plane perpendicular to the line which
bisects the angle ¢, will cause equal phase in /”. Take therefore a
system of axes with the Z-axis parallel to this line, then the con-
tribution of one molecule will be

2n
3 sin m (ct + 22 cosk q)

where 8 depends only on the kind of molecules, on z.and on the
distance 1P, u being the index of refraction.
The number of molecules in de dy d: amounts to
(a + ¥) dw dy d-=.
The total light-veetor in P thus becomes

ﬁﬁa—}r)sm—(@t%—& cos yp) dw dy dz.

and the intensu)

rije

Mfdtt[j’(a+ v;) (a+v2) sin —— ((t+2“ cos § )

0 V¥
. 2
gin — (et 22: cos L ¢)
17}

dw; dy; de; dus dy- dz-.
Integrating with resp. to ¢, we get ‘

1 in
> ik f o +a (v, +2.) -k vl cos - (za—2:) cos b ¢ | da.dy.de.de.dy.dz-.
. A - y

4%

The mean value of this must be calculated. The term with », 4~ ».
vanishes, and that with o* yield% no contribution proportional to V.
We mtroduce the value of »,»: from formula (10), and for 6 ==
frem form (9) This glves

Y H. A LORENTZ, On the scaltering of hght by molectiles, These Proceedings 18
P 12 (1910) :

-11 -
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At °f[
1 1 . S /-
— BfaV + — ﬁzaj‘fg (s — @5y Ys—Yzy 25—22) €08 i (#s—2c)dws .. . dy-
2 2 e , ul

For a great volume one integration over J7 can he performed
(compare the deduction of formula (11)).; further we put aV=N

'y then we get

— pP N[l —{—ﬂfm Czg (@, y, ~)dbdz/dz] oL (1)

The integral appearing here will be represented by (., that of
formula (11) by . It will be seen that the deductions criticised in

§ 1 yield an opalescence proportional to »*, a quantity which accord-
ing to the above is proportional to 1 4 (7, whereas the opalescence
Is proportional to 1 4 (7.

With the aid of the integral-equation (6) we can express (¢ and
. in the corresponding integrals of the function Jf. which we will
indicate by ¥ and F..

Integrating (6) with resp. to wyz from — o to 4 ®, we find

: m—f— @ + o= + o
Jff/ (wy2) da dy dz -—fff; (EnS) di dy dﬂﬁ’(w +&y + 14,2 +8) dadyde =
—w —m — o

~+ oo
f‘f ff (zy2) dndydz

F
= e T
& 1—F (14)

Multiplying (6) by cos C: and again integrating, we get

+o e .
G, -ffﬁ(gqg) zl;‘dqd?[f‘ﬁws C (z4-8) cos C§+ sin C (2 +-8) sin CE!

F@+§ y+n, 2 +8) dudyds = F,.
The integral with the sines disappears because /" and ¢ are even
functions; we find

or

F,
© 1-—-1"

¥

e o . (D)

In order to applv the results -obtained and to test them experi-
‘mentally, one might try to deduce f from molecular theory. This
‘would at best be possible under very simplifying suppositions and

-12 -
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even then only an approximation can be obtained. Therefore we
will take another way. As remarked in § 1, the exact value of

for very great volwmes was already known. In our notation we have’

Sy RT &
v — N dp
d'v

where N is the number of Avoerapo, v the molecular volnme.
According to formula (&)ﬂve have

PV =a(l+4 G)= _f’—-

Patting these results equal, we get
v* dp

1 —F—= .
. T RT dv

In the eritical point F=1.%)
The formula of opalescence first arrived at by Kresom and EiNstrIN

1) There appears to exist a closer correspondence between the given statistic-
mechanical method and the method using general considerations of probability, than
perhaps might be expected. The elements of the discriminant (which is an infinite
determinant in the former) agree with the function [ in thelatter. The former finds

from this the value of v; 3= as the quotient of a minor with that discriminant,
the latter deduces this value from an integral-equation. In the critical point the
discriminant vanishes, corresponding to this the FREDHomx'deLuminant of the
integral-equation is likewise zero. That this is the case when F=1, appears by
more closely studying the equation

g () — fg (58 f (0 & g+ 2 +8) dicndl = 0

1 . o
which only permits appropriate solutions if )= 7 (i e. this is the only proper

value). For F'=1 this i8 therefore the case with the equation (6) without second

member. ,
From the formula (15) it will be seen that form. (6) canbe solved by a Fourizr

integral, Putting

~+ =
Mo,s ma cos ny cos lz f (wyz) dadydz = ¢ (m, n, )
—

“we have

(m, n, l)
lw—(p(m, ny 1)

g (wyz) = " ¢08 M& 08 Ny ¢08 Lz dmdndl,

8

-13 -
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_ po @ '
, I()p___2st"VR7' dv

I — D N dp

iI—tsinty, .. . . (16)

in which represent
D distance of observation
p index of refraction,
P angle of electric force in incident light with direction of
observation,
will likewise be found by using in (13) the value found for Finstead
of F. The exact formula then will result by muluplym;’; by
+(Jl 1—-F
146 1—F,°
Developing the cosine in ¥, we find

e 17
¥F—F.= ) ffj;z Fay2) dadydz.
— B

Representing this integral by & and introducing the value of C,
we get

the factor

F — F,=4a* (1 4 cos ¢¢) (-E:)
ur

The formula of opalescence then will be:

V RT du 2 iy
To, 2n® — o w v, ) A P :
. L))

I
——~+4 ’u—(l—}—costf)( )

In the critical point itself it therefore is

Io V”()smw

il 1
I~ I Ng& (1 —4—cosq>) coeoe s (489

The greater exactness of form. (17) as compared with (16) is
confirmed by the measurements of one of us (Z.). According to these
measurements, which however bear upon a mixture of liquids the

1) ‘According to this formula the proportionality of the opalescence to )44,
which holds for . higher temperatures, changes continuously in the immediate
neighourhood of the critical point, inlo proportionality with x—2. This real “getling

~ whiter” of the opalescence should not be confused with the apparent changing of
colour which is always observed much farther {rom the eritical point. The latter

indeed is-only a result of the method of observalion, as is clearly proved by the
measurements of one of us (cf. ZERNIKE thesis).

-14 -
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<

reciprocal value of a quantity proportional to the opalescence changes
linearly with the difference of temperature 7--77, but by extrapolation
does mnot wvanish for 7= 7% but for 7—75.=0,°012. When
therefore for this value of 7—17% the denominator of (17) is equal
to zero, we can find from this, using vax per Waars’ equation, an
estimation for /. The calculation yields:

;:: 0,0022 or & = 1,2.10-7 e,

The quantity ¢ is a measure for the size of the sphere of attraction. For

+ o
1 .y
& = 5‘[][93(7 (ey2) dodyd:

(¢ distance to origin) whereas in the critical point

-
fffr’(myz) dadydz=—

If / were constant within a sphere with radius £, then & would
be '/, R*, and the above estimation would give
R=27.10""cm.

SUMMARY.

1. The known formulae of ecritical opalescence give an infinite
value at the critical point. Efforts to escape from this difficulty have
furnished formulae for the deviations of density with a dependence
upon the volume, at variance with the assumed mutual independence
of the elements of volume.

2. In order to obtain formulae applicable in the critical point, it
is found necessary to take into account the mutual influence of the
elements of volume, it being shown that near the critical point this
influence is sensible for distances large in comparison with the radius
of the sphere of attraction.

3. Two functions are introduced, one relating to the direct inter-
action of molecules, the other to the mutual influence of two elements
of volame. An integral equation gives the relation between the two
functions.

4. Corrected values are found for the mean deviations, and in
the formula of opalescence a correction is introduced. The latter
depends upon the sphere of attraction which can thus be calculated
from observations. '

5. Further it is shown that the same results may be arrived at
by taking "into account the mutual influence of the elements of
volume in the deductions of statistical mechanies, o

Groningen, Sept. 1914. SRR
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